Despite advances in primary percutaneous interventions (PPCI), management of microvascular obstructions in reperfused myocardial tissue remains challenging and is a high-risk procedure. This has led to renewed interest in the coronary venous system as an alternative route of access to the myocardium. This article reviews historical data describing therapeutic options via cardiac veins as well as discussing the clinical potential and limitations of a catheter intervention: pressure controlled intermittent coronary sinus occlusion (PICSO). Collected experimental and clinical information suggest that PICSO also offers the potential for tissue regeneration beyond myocardial salvage. A meta-analysis of observer controlled pICSO application in animal studies showed a dose dependent reduction in infarct size of 29.3% (p < 0.001). Additionally, a 4-fold increase of hemeoxygenase-1 gene expression (p < 0.001) in the center of infarction and a 2.5 fold increase of vascular endothelial growth factor (VEGF) (p < 0.002) in border zones suggest that molecular pathways are initiating structural maintenance. Early clinical evidence confirmed significant salvage and event free survival in patients with acute myocardial infarction and risk reduction for event free survival 5 years after the acute event (p < 0.0001). This experimental and clinical evidence was recently corroborated using modern PICSO technology in PPCI showing a significant reduction of infarct size, when compared to matched controls (p < 0.04). PICSO enhances redistribution of flow towards deprived zones, clearing microvascular obstruction and leading to myocardial protection. Beyond salvage, augmentation of molecular regenerative networks suggests a second mechanism of PICSO involving the activation of vascular cells in cardiac veins, thus enhancing structural integrity and recovery.
ObjectiveThe purpose of this study was to demonstrate the feasibility of a combined cooling strategy started out of hospital as an adjunctive to percutaneous coronary intervention (PCI) in the treatment of ST-elevation acute coronary syndrome (STE-ACS).DesignNon-randomised, single-centre feasibility trial.SettingDepartment of emergency medicine of a tertiary-care facility, Medical University of Vienna, Vienna, Austria. In cooperation with the Municipal ambulance service of the city of Vienna.PatientsConsecutive patients with STE-ACS presenting to the emergency medical service within 6 h after symptom onset.InterventionsCooling was initiated with surface cooling pads in the out-of-hospital setting, followed by the administration of 1000–2000 mL of cold saline at hospital arrival and completed by endovascular cooling in the catheterisation laboratory.Main outcome measuresFeasibility of lowering core temperature below 35.0°C prior to immediately performed revascularisation. Safety and tolerability of the cooling procedure.ResultsIn enrolled 19 patients (one woman, median age 51 years (IQR 45–59)), symptom onset to first medical contact (FMC) was 45 min (IQR 31–85). A core temperature below 35.0°C at reperfusion of the culprit lesion was achieved in 11 patients (78%) within 100 min (IQR 90–111) after FMC without any cooling-related serious adverse event. Temperature could be lowered from baseline 36.4°C (IQR 36.2–36.5°C) to 34.4°C (IQR 34.1–35.0°C) at the time of reperfusion.ConclusionsWith limitations an immediate out-of-hospital therapeutic hypothermia strategy was feasible and safe in patients with STE-ACS undergoing primary PCI.Clinical trial registrationhttp://www.clinicaltrials.gov/ct2/show/NCT01864343; clinical trials unique identifier: NCT01864343
Background Lipoprotein(a) [Lp(a)] is associated with coronary artery disease in population studies, however studies on its predictive value in patients with cardiovascular disease, in particular after acute coronary syndromes (ACS), are conflicting. The aim of this study was to investigate whether Lp(a) is associated with survival after ACS. Methods and results We analyzed Lp(a) measurement in 1,245 patients who underwent coronary angiography for ACS. The median follow-up for cardiovascular and all-cause mortality was 5.0 (IQR 3.2-8.0) years. 655 (52.6%) presented with ST-segment elevation myocardial infarction (STEMI), 424 (34.1%) with Non-ST-segment elevation myocardial infarction (NSTEMI) and 166 (13.3%) underwent coronary angiography for unstable angina. Cardiovascular mortality was 9.1% and all-cause mortality was 15.7%. Patients were stratified into four groups to their Lp(a) levels. (�15mg/dL, >15-30mg/dL, >30-60mg/dL, and >60mg/dL). Multivessel disease was significantly more common in patients with Lp(a)>60mg/dL (p<0.05). Increased levels of Lp(a) were not associated with cardiovascular mortality (HR compared with Lp(a) �15mg/dL were 1.2, 1.2, and 1.0, respectively; p = 0.69) and not with all-cause mortality (HR compared with Lp(a) �15mg/dL were 1.2, 1.2, and 1.2, respectively; p = 0.46). Conclusions Lp(a) levels at time of ACS were neither associated with cardiovascular nor with all-cause mortality. Although Lp(a) has been shown to be associated with incidence of coronary artery disease, this study does not support any role of Lp(a) as a risk factor for mortality after ACS. This should be taken into account for development of outcome studies for agents targeting Lp(a) plasma levels.
BackgroundEverolimus-eluting bioresorbable vascular scaffolds (BVS) represent an innovative treatment option for coronary artery disease. Clinical and angiographic results seem promising, however, data on its immediate procedural performance are still scarce. The aim of our study was to assess the mechanical properties of BVS by Optical Coherence Tomography (OCT) in clinical routine.MethodsPost-implantation OCT images of 40 BVS were retrospectively compared to those of 40 metallic everolimus-eluting stents (EES). Post-procedural device related morphological features were assessed. This included incidences of gross underexpansion and the stent eccentricity index (SEI, minimum/maximum diameter) as a measure for focal radial strength.ResultsPatients receiving BVS were younger than those with EES (54.0 ± 11.2 years versus 61.7 ± 11.4 years, p = 0.012), the remaining baseline, vessel and lesion characteristics were comparable between groups. Lesion pre-dilatation was more frequently performed and inflation time was longer in the BVS than in the EES group (n = 34 versus n = 23, p = 0.006 and 44.2 ± 12.8 versus 25.6 ± 8.4 seconds, p < 0.001, respectively). There were no significant differences in maximal inflation pressures and post-dilatation frequencies with non-compliant balloons between groups. Whereas gross device underexpansion was not significantly different, SEI was significantly lower in the BVS group (n = 12 (30 %) versus n = 14 (35 %), p = 0.812 and 0.69 ± 0.08 versus 0.76 ± 0.09, p < 0.001, respectively). There was no difference in major adverse cardiac event-rate at six months.ConclusionOur data show that focal radial expansion was significantly reduced in BVS compared to EES in a clinical routine setting using no routine post-dilatation protocol. Whether these findings have impact on scaffold mid-term results as well as on clinical outcome has to be investigated in larger, randomized trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.