We demonstrate the high level expression of integral membrane proteins (IMPs) in a cell-free coupled transcription/translation system using a modified Escherichia coli S30 extract preparation and an optimized protocol. The expression of the E. coli small multidrug transporters EmrE and SugE containing four transmembrane segments (TMS), the multidrug transporter TehA with 10 putative TMS, and the cysteine transporter YfiK with six putative TMS, were analysed. All IMPs were produced at high levels yielding up to 2.7 mg of protein per mL of reaction volume. Whilst the vast majority of the synthesized IMPs were precipitated in the reaction mixture, the expression of a fluorescent EmrE-sgGFP fusion construct showed evidence that a small part of the synthesized protein 'remained soluble and this amount could be significantly increased by the addition of E. coli lipids into the cell-free reaction. Alternatively, the majority of the precipitated IMPs could be solubilized in detergent micelles, and modifications to the solubilization procedures yielded proteins that were almost pure. The folding induced 1 by formation of the proposed a-helical secondary structures of the IMPs after solubilization in various micelles was monitored by CD spectroscopy. Furthermore, the reconstitution of EmrE, SugE and TehA into proteoliposomes was demonstrated by freeze-fracture electron microscopy, and the function of EmrE was additionally analysed by the specific transport of ethidium. The cell-free expression technique allowed efficient amino acid specific labeling of the IMPs with 15 N isotopes, and the recording of solution NMR spectra of the solubilized EmrE, SugE and YfiK proteins further indicated a correctly folded conformation of the proteins.
Channelrhodopsin-2 from Chlamydomonas reinhardtii is a lightgated ion channel. Over recent years, this ion channel has attracted considerable interest because of its unparalleled role in optogenetic applications. However, despite considerable efforts, an understanding of how molecular events during the photocycle, including the retinal trans-cis isomerization and the deprotonation/reprotonation of the Schiff base, are coupled to the channel-opening mechanism remains elusive. To elucidate this question, changes of conformation and configuration of several photocycle and conducting/nonconducting states need to be determined at atomic resolution. Here, we show that such data can be obtained by solid-state NMR enhanced by dynamic nuclear polarization applied to 15 N-labeled channelrhodopsin-2 carrying 14,15-13 C 2 retinal reconstituted into lipid bilayers. In its dark state, a pure all-trans retinal conformation with a stretched C14-C15 bond and a significant out-of-plane twist of the H-C14-C15-H dihedral angle could be observed. Using a combination of illumination, freezing, and thermal relaxation procedures, a number of intermediate states was generated and analyzed by DNP-enhanced solid-state NMR. Three distinct intermediates could be analyzed with high structural resolution: the early P 500 1 K-like state, the slowly decaying late intermediate P 480 4 , and a third intermediate populated only under continuous illumination conditions. Our data provide novel insight into the photoactive site of channelrhodopsin-2 during the photocycle. They further show that DNP-enhanced solid-state NMR fills the gap for challenging membrane proteins between functional studies and X-ray-based structure analysis, which is required for resolving molecular mechanisms.ince their discovery (1), channelrhodopsins (ChRs) have generated enormous interest because of the rapid development of their applications in optogenetics (2-7). Commonly, ChR2 from Chlamydomonas reinhardtii (8) and its variants are used thanks to their favorable expression levels. They are the only proteins known today functioning as light-gated ion channels (Fig. 1A). Like other microbial retinal proteins, they undergo a periodic photocycle. In ChRs, this photocycle is coupled to channel opening and closing as revealed in electrophysiological recordings (8). A chimera of ChR1 and ChR2 has been crystallized to yield a structure at 2.3-Å resolution (9). However, little is known on how this coupling functions on a molecular level, and a large number of studies based on visible (10-13), IR (11,[14][15][16][17][18][19], resonance Raman spectroscopy (20, 21), and EPR spectroscopy (22, 23) has been performed to address this question.The photocycles of microbial rhodopsins are usually compared with bacteriorhodopsin, the first discovered and most studied lightdriven proton pump (24). Without any illumination, microbial retinal proteins thermally equilibrate into a dark state (25). In the case of bacteriorhodopsin, for example, this state contains a mixture of two species terme...
A solved puzzle: The structure of the seven‐transmembrane‐helix proton pump proteorhodopsin obtained by solution NMR spectroscopy is based on NOE data combined with distance restraints derived from paramagnetic relaxation enhancement (see picture). Restraints from residual dipolar couplings improved the structural accuracy.
The proteorhodopsin (PR) family found in bacteria near the ocean's surface consists of hundreds of PR variants color-tuned to their environment. PR contains a highly conserved single histidine at position 75, which is not found in most other retinal proteins. Using (13)C and (15)N MAS NMR, we were able to prove for green PR that His75 forms a pH-dependent H-bond with the primary proton acceptor Asp97, which explains its unusually high pK(a). The functional role of His75 has been studied using site-directed mutagenesis and time-resolved optical spectroscopy: Ultrafast vis-pump/vis-probe experiments on PR(H75N) showed that the primary reaction dynamics is retained, while flash photolysis experiments revealed an accelerated photocycle. Our data show the formation of a pH-dependent His-Asp cluster which might be typical for eubacterial retinal proteins. Despite its stabilizing function, His75 was found to slow the photocycle in wild-type PR. This means that PR was not optimized by evolution for fast proton transfer, which raises questions about its true function in vivo.
Photo-isomerization of the 11-cis retinal chromophore activates the mammalian light-receptor rhodopsin, a representative member of a major superfamily of transmembrane G-protein-coupled receptor proteins (GPCRs) responsible for many cell signal communication pathways. Although low-resolution (5 A) electron microscopy studies confirm a seven transmembrane helix bundle as a principal structural component of rhodopsin, the structure of the retinal within this helical bundle is not known in detail. Such information is essential for any theoretical or functional understanding of one of the fastest occurring photoactivation processes in nature, as well as the general mechanism behind GPCR activation. Here we determine the three-dimensional structure of 11-cis retinal bound to bovine rhodopsin in the ground state at atomic level using a new high-resolution solid-state NMR method. Significant structural changes are observed in the retinal following activation by light to the photo-activated M(I) state of rhodopsin giving the all-trans isomer of the chromophore. These changes are linked directly to the activation of the receptor, providing an insight into the activation mechanism of this class of receptors at a molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.