In the presented work, the characterization of plates using zero group velocity Lamb modes is discussed. First, analytical expressions are shown for the determination of the k-ω location of the zero group velocity Lamb modes as a function of the Poisson's ratio. The analytical expressions are solved numerically and an inverse problem is formulated to determine the unknown wave velocities in plates of known thickness. The analysis is applied to determine the elastic properties of tungsten and aluminum plates based on the experimentally measured frequency spectra.
Focusing light through turbid media using wavefront shaping generally requires a noninvasive guide star to provide feedback on the focusing process. Here we report a photoacoustic guide star mechanism suitable for wavefront shaping through a scattering wall that is based on the fluctuations in the photoacoustic signals generated in a micro-vessel filled with flowing absorbers. The standard deviation of photoacoustic signals generated from random distributions of particles is dependent on the illumination volume and increases nonlinearly as the illumination volume is decreased. We harness this effect to guide wavefront shaping using the standard deviation of the photoacoustic response as the feedback signal. We further demonstrate sub-acoustic resolution optical focusing through a diffuser with a genetic algorithm optimization routine.
Lamb waves exhibit conical dispersion at zero wave number when an accidental degeneracy occurs between thickness mode longitudinal and shear resonances of the same symmetry. Here we investigate the propagation of Lamb waves generated at the conical point frequency and the interaction of these waves with defects and interfaces. The group velocity and mode shapes of Lamb waves at the conical point are found, and it is shown that as the wavenumber gets close to zero, considerable group velocity is seen only for material properties supporting a degeneracy or near-degeneracy. The unusual wave propagation and mode conversion of Lamb waves generated at the conical point are elucidated through numerical simulations. Experimental measurements of near conical point Lamb wave interaction with holes in a plate demonstrate that these waves flow around defects while maintaining a constant phase of oscillation across that plate surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.