The application of black soldier fly (BSF), Hermetia illucens based technology to process organic wastes presents a practical option for organic waste management by producing feed materials (protein, fat), biodiesel, chitin and biofertilizer. Therefore, BSF organic wastes recycling is a sustainable and cost-effective process that promotes resource recovery, and generates valuable products, thereby creating new economic opportunities for the industrial sector and entrepreneurs. Specifically, we discussed the significance of BSF larvae (BSFL) in the recycling of biowaste. Despite the fact that BSFL may consume a variety of wastes materials, whereas, certain lignocellulosic wastes, such as dairy manure, are deficient in nutrients, which might slow BSFL development. The nutritional value of larval feeding substrates may be improved by mixing in nutrient-rich substrates like chicken manure or soybean curd residue, for instance. Similarly, microbial fermentation may be used to digest lignocellulosic waste, releasing nutrients that are needed for the BSFL. In this mini-review, a thorough discussion has been conducted on the various waste biodegraded by the BSFL, their co-digestion and microbial fermentation of BSFL substrate, as well as the prospective applications and safety of the possible by-products that may be generated at the completion of the treatment process. Furthermore, this study examines the present gaps and challenges on the direction to the efficient application of BSF for waste management and the commercialization of its by-products.
Chitin and chitosan are biopolymers that are frequently found in nature and have a broad range of applications in the food, biomedical and industrial sectors, due to their high biological activity. The primary source of chitin and chitosan is shellfish, however, shortages in the supply chain, seasonality issues in their availability, as well as ecological degradation are only a few of the problems with the main chitin resources. Due to the broad spectrum of applications for which chitin can be used, the demand for chitin and its derivatives is increasing. Therefore, the market is looking for widely available, greener alternatives to the main commercial chitin sources. Insects appear as a suitable candidate to fill this gap. During insect rearing and processing, a number of side streams are generated, e.g., exuviae of larvae and pupae, dead adults, etc. which are currently mostly discarded as waste. However, these side streams could constitute a novel and long-term supply of chitin for industrial applications. Recent research has demonstrated the suitability of several edible insect species for the production of chitin and chitosan, wherein the exoskeleton of the black soldier fly and field cricket are rich in chitin, making them a good source for chitin and chitosan extraction and purification among other farmed insect candidates. Moreover, several potential uses have been identified for insect-derived chitin and chitosan. Thus, this review aims to present recent advances in the production of chitin and chitosan from edible insects, specifically on their extraction and purification, as well as on their applications for agriculture, food and nutrition, biomedicine and bioplastic production.
The food system represents a key industry for Europe and Germany in particular. However, it is also the single most significant contributor to climate and environmental change. A food system transformation is necessary to overcome the system’s major and constantly increasing challenges in the upcoming decades. One possible facilitator for this transformation are radical and disruptive innovations that start-ups develop. There are many challenges for start-ups in general and food start-ups in particular. Various support opportunities and resources are crucial to ensure the success of food start-ups. One aim of this study is to identify how the success of start-ups in the food system can be supported and further strengthened by actors in the innovation ecosystem in Germany. There is still room for improvement and collaboration toward a thriving innovation ecosystem. A successful innovation ecosystem is characterised by a well-organised, collaborative, and supportive environment with a vivid exchange between the members in the ecosystem. The interviewees confirmed this, and although the different actors are already cooperating, there is still room for improvement. The most common recommendation for improving cooperation is learning from other countries and bringing the best to Germany.
The food system represents a key industry for Europe and particularly Germany. However, it is also the single most significant contributor to climate and environmental change. A food system transformation is necessary to overcome the system's major and constantly increasing challenges in the upcoming decades. One possible facilitator for this transformation are radical and disrup-tive innovations that start-ups develop. There are many challenges for start-ups in general and food start-ups in particular. Various support opportunities and resources are crucial to ensure the success of food start-ups. One aim of this study is to identify how the success of start-ups in the food system can be supported and further strengthened by players in the innovation ecosystem in Germany. There is still room for improvement and collaboration toward a thriving innovation ecosystem. A successful innovation ecosystem is characterised by a well-organised, collaborative, and supportive environment with a vivid exchange between the members in the ecosystem. The interviewees confirmed this, and although the different actors are already cooperating, there is still room for improvement. The most common recommendation for improving cooperation is learning from other countries and bringing the best to Germany.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.