The need for low-carbon transitions in the industrial sector is increasingly recognised by governments and industry. However, radical pathways for reaching near-zero emissions in the energy intensive basic materials industry are still relatively unexplored. Most studies focus on mitigation options that lead to marginal emission reductions, e.g., energy and materials efficiency improvements and some fuel switching, or they rely on carbon capture and storage that allows continued use of existing processes and feedstock. In light of the vast future potential for primary renewable electricity we explore as a what-if thought-experiment the implications of electrifying a stable basic materials production in the EU. A quantitative technical scenario analysis of potential future electricity demand in the production of the most energy and carbon intensive basic materials, i.e., steel, cement, glass, lime, olefins, chlorine and ammonia, is presented for EU28. Production of these seven basic materials resulted in directly and indirectly energy related CO 2 emissions of about 457 Mton in 2010, equivalent to almost 13 % of all energy related GHG in EU28. Their production in 2010 required 125 TWh of electricity and 1432 TWh of fossil fuels and feedstock. A complete shift to electricity would result in an electricity demand of 1600 TWh, about 1100 TWh of which would be for producing hydrogen and hydrocarbon feedstock. We assume closed loops for carbon dioxide through recovery from waste incineration and biogenic sources. With increased materials efficiency and some share of bio-based materials and biofuels the electricity demand can be much lower. Our analysis shows that near-zero emissions could in principle be reached without relying on CCS (except for limestone related emissions) and suggests that a circular economy powered by renewable electricity may indeed be possible, at least from an energy resource and technology point of view.
Abstract:The Low Carbon Future Cities (LCFC) project aims at facing a three dimensional challenge by developing an integrated city roadmap balancing: low carbon development, gains in resource efficiency and adaptation to climate change. The paper gives an overview of the first outcomes of the analysis of the status quo and assessment of the most likely developments regarding GHG emissions, climate impacts and resource use in Wuxi-the Chinese pilot city for the LCFC project. As a first step, a detailed emission inventory following the IPCC guidelines for Wuxi has been carried out. In a second step, the future development of energy demand and related CO 2 emissions in 2050 were simulated in a current policy scenario (CPS). In parallel, selected aspects of material and water flows for the energy and the building sector were analyzed and modeled. In addition, recent and future climate impacts and vulnerability were investigated. Based on these findings, nine key sectors with high relevance to the three dimensions could be identified. Although Wuxi's government has started a path to implement a low carbon plan, the first results show that, for the shift towards a sustainable low carbon development, more ambitious steps need to be taken in order to overcome the challenges faced.
OPEN ACCESSSustainability 2013, 5 3225
Abstract:The German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) mitigation scenarios for NRW's main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO2 capture and storage). All pathways had optimistic assumptions on the rate of industrial growth and availability of low-carbon electricity. We find that a policy of "re-industrialisation" for NRW based on the current industrial structures (assumed here to represent an average growth of NRWs industrial gross value added (GVA) of 1.6% per year until 2030 and 0.6% per year from 2030 to 2050), would pose a significant challenge for the achievement of overall energy demand and German greenhouse gas (GHG) emission targets, in particular as remaining efficiency potentials in NRW are limited. In the best-available technology (BAT) scenario CO2 emission reductions of only 16% are achieved, whereas the
OPEN ACCESSEnergies 2015, 8 11405 low carbon (LC) and the carbon capture and storage (CCS) scenario achieve 50% and 79% reduction respectively. Our results indicate the importance of successful development and implementation of a decarbonised electricity supply and breakthrough technologies in industry-such as electrification, hydrogen-based processes for steel, alternative cements or CCS-if significant growth is to be achieved in combination with climate mitigation. They, however, also show that technological solutions alone, together with unmitigated growth in consumption of material goods, could be insufficient to meet GHG reduction targets in industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.