This research tested how different scanner positions and sample plot sizes affect the tree detection and diameter measurement in forest inventories. For this, a multistage density-based clustering approach was further developed for the automatic mapping of tree positions and simultaneously applied with automatic measurements of tree diameters. This further development of the algorithm reduced the proportion of falsely detected tree locations by about 64%. The algorithms were tested in different settings with respect to the number and spatial alignment of scanner positions and under manifold forest conditions, covering different age classes and a mixture of scenarios, and representing a broad gradient of structural complexity. For circular sample plots with a maximum radius of 20 m, the tree mapping algorithm showed a detection rate of 82.4% with seven scanner positions at the vertices of a hexagon plus the center coordinates, and 68.3% with four scanner positions aligned in a triangle plus the center. Detection rates were significantly increased with smaller maximum radii. Thus, with a maximum radius of 10 m, the hexagon setting yielded a detection rate of 90.5% and the triangle 92%. Other alignments of scanner positions were also tested, but proved to be either unfavorable or too labor-intensive. The commission rates were on average less than 3%. The root mean square error (RMSE) of the dbh (diameter at breast height) measurement was between 2.66 cm and 4.18 cm for the hexagon and between 3.0 cm and 4.7 cm for the triangle design. The robustness of the algorithm was also demonstrated via tests by means of an international benchmark dataset. It has been shown that the number of stems per hectare had a significant impact on the detection rate.
Abstract:In this study, height-diameter relations were modeled using two different mixed model types for imputation of missing heights from longitudinal data. Model Type A had a hierarchical structure of sample plot-specific and measurement occasion-specific random effects. In Model Type B, a possible temporal variance was modeled by a sample plot-specific linear time trend. Furthermore, various calibration strategies of random effects were performed on past and current data, and a combination of both. The performance of the mixed models was compared on independent data using bias and root mean square error (RMSE). The results showed that Model Type A achieved the highest precision (lowest RMSE), if sample plot-specific random effects were predicted from old data and measurement occasion-specific ones were predicted from new data. In comparison, however, Model Type B had a higher RMSE, and lower bias. Model performance was almost unaffected from the usage of past or current data for the prediction of random effects. Results revealed that a certain calibration strategy should be simultaneously applied to all random effects from the same hierarchy level. Otherwise, predictions would become imprecise and a serious bias may result. In comparison with traditional uniform height curves, the novel mixed model approach performed slightly better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.