BACKGROUND Due to the rapidly increasing availability of metabolomics data in prospective studies, an update of the meta evidence on metabolomics and type 2 diabetes risk is warranted. PURPOSE To conduct an updated systematic review and meta-analysis of plasma, serum, and urine metabolite markers and incident type 2 diabetes. DATA SOURCES We searched PubMed and Embase until 6 March 2021. STUDY SELECTION We selected prospective observational studies where investigators used high-throughput techniques to investigate the relationship between plasma, serum, or urine metabolites and incident type 2 diabetes. DATA EXTRACTION Baseline metabolites per-SD risk estimates and 95% CIs for incident type 2 diabetes were extracted from all eligible studies. DATA SYNTHESIS A total of 61 reports with 71,196 participants and 11,771 type 2 diabetes cases/events were included in the updated review. Meta-analysis was performed for 412 metabolites, of which 123 were statistically significantly associated (false discovery rate–corrected P < 0.05) with type 2 diabetes risk. Higher plasma and serum levels of certain amino acids (branched-chain, aromatic, alanine, glutamate, lysine, and methionine), carbohydrates and energy-related metabolites (mannose, trehalose, and pyruvate), acylcarnitines (C4-DC, C4-OH, C5, C5-OH, and C8:1), the majority of glycerolipids (di- and triacylglycerols), (lyso)phosphatidylethanolamines, and ceramides included in meta-analysis were associated with higher risk of type 2 diabetes (hazard ratio 1.07–2.58). Higher levels of glycine, glutamine, betaine, indolepropionate, and (lyso)phosphatidylcholines were associated with lower type 2 diabetes risk (hazard ratio 0.69–0.90). LIMITATIONS Substantial heterogeneity (I2 > 50%, τ2 > 0.1) was observed for some of the metabolites. CONCLUSIONS Several plasma and serum metabolites, including amino acids, lipids, and carbohydrates, are associated with type 2 diabetes risk.
In our study, high ferritin, low glycine, and altered hepatic-derived lipid concentrations in the circulation were associated with total red meat consumption and, independent of red meat, with diabetes risk. The red meat-associated diabetes risk was largely attenuated after adjustment for selected biomarkers, which is consistent with the presumed mediation hypothesis.
Plasma protein N-glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma N-glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e., myocardial infarction and stroke). RESEARCH DESIGN AND METHODSBased on the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort (n 5 27,548), we constructed case-cohorts including a random subsample of 2,500 participants and all physician-verified incident cases of type 2 diabetes (n 5 820; median follow-up time 6.5 years) and CVD (n 5 508; median follow-up time 8.2 years). Information on the relative abundance of 39 N-glycan groups in baseline plasma samples was generated by chromatographic profiling. We selected predictive N-glycans for type 2 diabetes and CVD separately, based on cross-validated machine learning, nonlinear model building, and construction of weighted prediction scores. This workflow for CVD was applied separately in men and women. RESULTSThe N-glycan-based type 2 diabetes score was strongly predictive for diabetes risk in an internal validation cohort (weighted C-index 0.83, 95% CI 0.78-0.88), and this finding was externally validated in the Finland Cardiovascular Risk Study (FINRISK) cohort. N-glycans were moderately predictive for CVD incidence (weighted Cindices 0.66, 95% CI 0.60-0.72, for men; 0.64, 95% CI 0.55-0.73, for women). Information on the selected N-glycans improved the accuracy of established and clinically applied risk prediction scores for type 2 diabetes and CVD. CONCLUSIONSSelected N-glycans improve type 2 diabetes and CVD prediction beyond established risk markers. Plasma protein N-glycan profiling may thus be useful for risk stratification in the context of precisely targeted primary prevention of cardiometabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.