Potential-energy surfaces of the three lowest singlet states of pyrazine have been calculated as a function of ab initio determined ground-state normal coordinates, using complete-active-space self-consistent-field (CASSCF) and multireference configuration interaction (MRCI) techniques. The conical intersection of the S1 and S2 adiabatic potential-energy surfaces has been mapped out in selected subspaces spanned by the most relevant vibrational coordinates. A unitary transformation from the adiabatic to a quasidiabatic electronic representation is performed, which eliminates the rapid variations of the wave functions responsible for the singularity of the nonadiabatic coupling element. Transition-dipole-moment functions have been obtained in the adiabatic and in the diabatic representation. The leading coefficients of the Taylor expansion of the diabatic potential-energy and transition-dipole-moment surfaces in terms of ground-state normal coordinates at the reference geometry have been obtained at the CASSCF/MRCI level. Using a vibronic-coupling model Hamiltonian based on this Taylor expansion, the absorption spectrum of the interacting S1–S2 manifold has been calculated, taking account of the four spectroscopically most relevant modes.
New experimental and theoretical data on the resonance Raman (RR) spectroscopy of the S1 and S2 states of pyrazine are presented. Based on recent ab initio CASSCF (complete- active-space-self-consistent-field) and MRCI (multireference configuration interaction) calculations of Woywod et al. [J. Chem. Phys. 100, 1400 (1994)], we construct a vibronic coupling model of the conically intersecting S1 and S2 states of pyrazine, which includes the seven most relevant vibrational degrees of freedom of the molecule. Employing a time-dependent approach that treats the intramolecular couplings in a nonperturbative manner, we calculate RR cross sections for this model, taking explicitly into account the nonseparability of all vibrational modes. The combination of high-level ab initio calculations and multimode propagation techniques makes it possible, for the first time, to make first-principles predictions of RR spectra for vibronically coupled electronic states of an aromatic molecule. The theoretical data are compared to experimental gas-phase RR spectra which have been obtained for five different excitation wavelengths. The comparison reveals that the ab initio predictions match the experimental results in almost every detail.
Potential-energy surfaces of the lowest singlet and triplet excited states of benzene and pyrazine have been calculated using complete-active-space self-consistent-field and multireference configuration interaction (MRCI) techniques. We have focused our attention on the saddle points and surface intersections associated with the reaction path to a biradical form called prefulvene. The barrier heights separating the prefulvenic minimum from the minimum of the planar aromatic form on the Z-T* excited singlet surface and on the ground-state surface have been estimated by large-scale MRCI calculations. The conical intersection of the lowest rfl excited singlet surface with the So surface has been mapped out in two dimensions, the reaction coordinate to prefulvene and the coordinate of maximum coupling perpendicular to it. The re1evanc.e of these ab initio potential-energy data for the interpretation of photophysical relaxation pathways in benzene and pyrazine ("channelthree" effect) is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.