International audienceQuantifying suspended sediment exports from catchments and understanding suspended sediment dynamics within river networks is important, especially in areas draining erodible material that contributes to the siltation of downstream reservoirs and to the degradation of water quality. A one-year continuous monitoring study of water and sediment fluxes was conducted in three upland subcatchments (3.0, 9.3, and 12.0 km2) located within the Cointzio basin, in the central volcanic highlands of Mexico (Michoacán state). Two subcatchments generated high sediment exports (i.e., Huertitas, 900-1500 t km− 2 y− 1 and Potrerillos, 600-800 t km− 2 y− 1), whereas the third subcatchment was characterized by a much lower sediment yield (i.e., La Cortina, 30 t km− 2 y− 1). Such disparities in subcatchment behaviours were associated with the presence of severely gullied areas in Huertitas and Potrerillos rather than with rainfall erosivity indices. An adapted classification of hysteretic patterns between suspended sediment concentration (SSC) and discharge was proposed because 42% of flood events contributing to 70% of sediment export were not discriminated by the classical clockwise/anticlockwise typology. This new classification allowed the identification of relationships in the hydrosedimentary responses of successive floods. A stream transport capacity limit was also detected during hydrograph recession phases. Overall, hydrosedimentary processes proved to be seasonally dependent: sediment export was repeatedly limited by the stream transport capacity during the first part of the rainy season, whereas a channel minimum erosivity threshold was frequently reached at the end of the season
Carbon dioxide (CO2) evasion from inland waters is an important component of the global carbon cycle. However, it remains unknown how global change affects CO2 emissions over longer time scales. Here, we present seasonal and annual fluxes of CO2 emissions from streams, rivers, lakes, and reservoirs throughout China and quantify their changes over the past three decades. We found that the CO2 emissions declined from 138 ± 31 Tg C yr−1 in the 1980s to 98 ± 19 Tg C yr−1 in the 2010s. Our results suggest that this unexpected decrease was driven by a combination of environmental alterations, including massive conversion of free-flowing rivers to reservoirs and widespread implementation of reforestation programs. Meanwhile, we found increasing CO2 emissions from the Tibetan Plateau inland waters, likely attributable to increased terrestrial deliveries of organic carbon and expanded surface area due to climate change. We suggest that the CO2 emissions from Chinese inland waters have greatly offset the terrestrial carbon sink and are therefore a key component of China’s carbon budget.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.