Fine-scale currents, O(1–100 km, days–months), are actively involved in the transport and transformation of biogeochemical tracers in the ocean. However, their overall impact on large-scale biogeochemical cycling on the timescale of years remains poorly understood due to the multiscale nature of the problem. Here, we summarize these impacts and critically review current estimates. We examine how eddy fluxes and upscale connections enter into the large-scale balance of biogeochemical tracers. We show that the overall contribution of eddy fluxes to primary production and carbon export may not be as large as it is for oxygen ventilation. We highlight the importance of fine scales to low-frequency natural variability through upscale connections and show that they may also buffer the negative effects of climate change on the functioning of biogeochemical cycles. Significant interdisciplinary efforts are needed to properly account for the cross-scale effects of fine scales on biogeochemical cycles in climate projections. Expected final online publication date for the Annual Review of Marine Science, Volume 16 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Abstract. Fronts affect phytoplankton growth and phenology by locally reducing stratification and increasing nutrient supplies. Biomass peaks at fronts have been observed in situ and linked to local nutrient upwelling and/or lateral transport, while reduced stratification over fronts has been shown to induce earlier blooms in numerical models. Satellite imagery offers the opportunity to quantify these induced changes in phytoplankton over a large number of fronts and at synoptic scales. Here we used 20 years of sea surface temperature (SST) and chlorophyll a (Chl a) satellite data in a large region surrounding the Gulf Stream to quantify the impact of fronts on surface Chl a (used as a proxy for phytoplankton) in three contrasting bioregions, from oligotrophic to blooming ones, and throughout the year. We computed an heterogeneity index (HI) from SST to detect fronts and used it to sort fronts into weak and strong ones based on HI thresholds. We observed that the location of strong fronts corresponded to the persistent western boundary current fronts and weak fronts to more ephemeral submesoscale fronts. We compared Chl a distributions over strong fronts, over weak fronts, and outside of fronts in the three bioregions. We assessed three metrics: the Chl a excess over fronts at the local scale of fronts, the surplus in Chl a induced at the bioregional scale, and the lag in spring bloom onset over fronts. We found that weak fronts are associated with a local Chl a excess weaker than strong fronts, but because they are also more frequent, they contribute equally to the regional Chl a surplus. We also found that the local excess of Chl a was 2 to 3 times larger in the bioregion with a spring bloom than in the oligotrophic bioregion, which can be partly explained by the transport of nutrients by the Gulf Stream. We found strong seasonal variations in the amplitude of the Chl a excess over fronts, and we show periods of Chl a deficit over fronts north of 45∘ N that we attribute to subduction. Finally we provide observational evidence that blooms start earlier over fronts by 1 to 2 weeks. Our results suggest that the spectacular impact of fronts at the local scale of fronts (up to +60 %) is more limited when considered at the regional scale of bioregions (less than +5 %) but may nevertheless have implications for the region's overall ecosystem.
Abstract. Observations and theory have suggested that ocean fronts are ecological hotspots, associated with higher diversity and biomass across many trophic levels. The hypothesis that these hotspots are driven by frontal nutrient injections is seemingly supported by the frequent observation of opportunistic diatoms at fronts, but the behavior of the rest of the plankton community is largely unknown. Here we investigate the organization of planktonic communities across fronts by analyzing eight high-resolution transects in the California Current Ecosystem containing extensive data for 24 groups of bacteria, phytoplankton, and zooplankton. We find that a distinct frontal plankton community characterized by enhanced biomass of not only diatoms and copepods but many other groups of plankton such as chaetognaths, rhizarians, and appendicularians emerges over most fronts. Importantly, we find spatial variability at a finer scale (typically 1–5 km) than the width of the front itself (typically 10–30 km) with peaks of different plankton taxa at different locations across the width of a front. Our results suggest that multiple processes, including horizontal stirring and biotic interactions, are responsible for creating this fine-scale patchiness.
Abstract. Fronts affect phytoplankton growth and phenology by locally reducing stratification and increasing vertical nutrient supply. Biomass peaks at fronts have been observed in-situ and linked to local nutrient upwelling, and reduced stratification over fronts has been shown to induce earlier blooms in numerical models. However observation of these biophysical interactions through satellite imagery have been scarce, despite the opportunity to quantify them at synoptic scales. Here we used twenty years of Sea Surface Temperature (SST) and Chlorophyll-a satellite data in a large region surrounding the Gulf Stream to quantify the impact of fronts on phytoplankton in contrasting regimes, from oligotrophy to bloom, and throughout the year. We computed an Heterogeneity Index (HI) from SST, and used it to sort fronts into weak and strong fronts based on HI thresholds. We observed that the localization of strong fronts corresponded to western boundary current fronts, and weak fronts to more ephemeral submesoscale fronts. We compared Chlorophyll-a distributions over strong fronts, weak fronts and outside of fronts. We assessed three metrics, the local enhancement of Chlorophyll-a over fronts, the global enhancement of Chlorophyll-a due to fronts at the scale of the region, and the lag in spring bloom onset due to fronts. We found that weak fronts lead to a local enhancement of Chlorophyll-a weaker than strong fronts, but because they are also more frequent they contribute equally to the regional Chlorophyll-a budget. We also find the the local enhancement of Chlorophyll-a was two to three times larger for the spring bloom than in the oligotrophic subtropical gyre. We also provide observational evidence that blooms start earlier over fronts, by one to two weeks. Nevertheless our results suggest that the spectacular impact of fronts at the local scale may be misleading, considering their impact on a regional scale budget remains limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.