The modelling and analysis of Brushless Doubly Fed Reluctance Machines (BDFRMs), taking into account magnetic saturation and rotor movement, by conventional modelling techniques are very difficult, if not impossible, because the two stator windings have different number of poles leading to a complex flux pattern. To overcome this drawback, Finite Element Analysis (FEA) is generally used for modelling and analysing BDFRMs. But it requires a considerable computational time compared with semi-analytical methods. This article, therefore, steps forward by proposing a new approach to dynamical modelling of BDFRM based on the Reluctance Network Method (RNM), which can enable accurate calculation of the electromagnetic parameters and performances of BDFRMs. Indeed, the reluctance network method offers an interesting compromise between precision and computation time compared to finite element analysis. To validate the proposed model, simulations are carried out and comparison are made with FEA. It is observed that the greatest error between the values of the proposed model and those from FEA is close to 1%. The accuracy in the calculation of electromagnetic parameters, as well as the computational time leads us to the conclusion that the proposed model could be suitable for optimisation and control purposes.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.