The internet of things (IoT) and cloud computing are two technologies which have recently changed both the academia and industry and impacted our daily lives in different ways. However, despite their impact, both technologies have their shortcomings. Though being cheap and convenient, cloud services consume a huge amount of network bandwidth. Furthermore, the physical distance between data source(s) and the data centre makes delays a frequent problem in cloud computing infrastructures. Fog computing has been proposed as a distributed service computing model that provides a solution to these limitations. It is based on a para-virtualized architecture that fully utilizes the computing functions of terminal devices and the advantages of local proximity processing. This paper proposes a multi-layer IoT-based fog computing model called IoT-FCM, which uses a genetic algorithm for resource allocation between the terminal layer and fog layer and a multi-sink version of the least interference beaconing protocol (LIBP) called least interference multi-sink protocol (LIMP) to enhance the fault-tolerance/robustness and reduce energy consumption of a terminal layer. Simulation results show that compared to the popular max–min and fog-oriented max–min, IoT-FCM performs better by reducing the distance between terminals and fog nodes by at least 38% and reducing energy consumed by an average of 150 KWh while being at par with the other algorithms in terms of delay for high number of tasks.
This work presents a comparative evaluation of four population-based optimization algorithms for workflow scheduling in cloud-fog environments. These algorithms are as follows: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE) and GA-PSO. This work also provides the motivational groundwork for the weighted sum objective function for the workflow scheduling problem and develops this function based on three objectives: makespan, cost and energy. The recently proposed FogWorkflowSim is used as the simulation environment with the aforementioned objectives serving performance metrics.Results show that hybrid combination of the GA-PSO algorithm exhibits slightly better than the standard algorithms. Future work will include expansion of the workflows used by increasing the number of tasks as well as adding some more workflows. The addition of some more objectives to the weighted objective function will also be pursued.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.