International audienceThe three-dimensional linear temporal stability properties of a flow composed of two corotating q-vortices (also called Batchelor vortices) are predicted by numerical stability analysis. As for the corresponding counter-rotating case, when the axial flow parameter is increased, different instability modes are observed and identified as a combination of resonant Kelvin modes of azimuthal wavenumbers m and m+2 within each vortex. In particular, we show that the sinuous mode, which is the dominant instability mode without axial flow, is stabilized in the presence of a moderate axial flow. Different types of mode with a large amplitude in the critical layer are also identified. For small separation distances (above the merging threshold), unstable eigenmodes, corresponding to axial wavenumbers that cannot be easily identified with simple resonant interactions of Kelvin modes, are also observed. Their growth rate is a substantial fraction of the growth rates of low-order resonant modes. The effects of the Reynolds number and vortex separation distance on the growth rate parameter map are considered. Finally, we analyze the similarities and differences between the stability characteristics of co- and counter-rotating vortex pairs
International audienceResults are presented from an experimental study on the dynamics of pairs of vortices, in which the axial velocity within each core differs from that of the surrounding fluid. Co- and counter-rotating vortex pairs at moderate Reynolds numbers were generated in a water channel from the tips of two rectangular wings. Measurement of the three-dimensional velocity field was accomplished using stereoscopic particle image velocimetry, revealing significant axial velocity deficits in the cores. For counter-rotating pairs, the long-wavelength Crow instability, involving symmetric wavy displacements of the vortices, could be clearly observed using dye visualisation. Measurements of both the axial wavelength and the growth rate of the unstable perturbation field were found to be in good agreement with theoretical predictions based on the full experimentally measured velocity profile of the vortices, including the axial flow. The dye visualisations further revealed the existence of a short-wavelength core instability. Proper orthogonal decomposition of the time series of images from high-speed video recordings allowed a precise characterisation of the instability mode, which involves an interaction of waves with azimuthal wavenumbers m = 2 and m = 0. This combination of waves fulfils the resonance condition for the elliptic instability mechanism acting in strained vortical flows. A numerical three-dimensional stability analysis of the experimental vortex pair revealed the same unstable mode, and a comparison of the wavelength and growth rate with the values obtained experimentally from dye visualisations shows good agreement. Pairs of co-rotating vortices evolve in the form of a double helix in the water channel. For flow configurations that do not lead to merging of the two vortices over the length of the test section, the same type of short-wave perturbations were observed. As for the counter-rotating case, quantitative measurements of the wavelength and growth rate, and comparison with previous theoretical predictions, again identify the instability as due to the elliptic mechanism. Importantly, the spatial character of the short-wave instability for vortex pairs with axial flow is different from that previously found in pairs without axial flow, which exhibit an azimuthal variation with wavenumber m = 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.