In this paper we study flag codes on Fqn, being Fq the finite field with q elements. Special attention is given to the connection between the parameters and properties of a flag code and the ones of a family of constant dimension codes naturally associated to it (the projected codes). More precisely, we focus on consistent flag codes, that is, flag codes whose distance and size are completely determined by their projected codes. We explore some aspects of this family of codes and present examples of them by generalizing the concepts of equidistant and sunflower subspace code to the flag codes setting. Finally, we present a decoding algorithm for consistent flag codes that fully exploits the consistency condition.
In this paper, we study flag codes on the vector space $${{\mathbb {F}}}_q^n$$ F q n , being q a prime power and $${{\mathbb {F}}}_q$$ F q the finite field of q elements. More precisely, we focus on flag codes that attain the maximum possible distance (optimum distance flag codes) and can be obtained from a spread of $${{\mathbb {F}}}_q^n$$ F q n . We characterize the set of admissible type vectors for this family of flag codes and also provide a construction of them based on well-known results about perfect matchings in graphs. This construction attains both the maximum distance for its type vector and the largest possible cardinality for that distance.
In network coding, a flag code is a set of sequences of nested subspaces of F n q , being F q the finite field with q elements. Flag codes defined as orbits of a cyclic subgroup of the general linear group acting on flags of F n q are called cyclic orbit flag codes. Inspired by the ideas in [10], we determine the cardinality of a cyclic orbit flag code and provide bounds for its distance with the help of the largest subfield over which all the subspaces of a flag are vector spaces (the best friend of the flag). Special attention is paid to two specific families of cyclic orbit flag codes attaining the extreme possible values of the distance: Galois cyclic orbit flag codes and optimum distance cyclic orbit flag codes. We study in detail both classes of codes and analyze the parameters of the respective subcodes that still have a cyclic orbital structure.
In network coding, a flag code is a set of sequences of nested subspaces of F n q , being F q the finite field with q elements. Flag codes defined as orbits of a cyclic subgroup of the general linear group acting on flags of F n q are called cyclic orbit flag codes. Inspired by the ideas in [10], we determine the cardinality of a cyclic orbit flag code and provide bounds for its distance with the help of the largest subfield over which all the subspaces of a flag are vector spaces (the best friend of the flag). Special attention is paid to two specific families of cyclic orbit flag codes attaining the extreme possible values of the distance: Galois cyclic orbit flag codes and optimum distance cyclic orbit flag codes. We study in detail both classes of codes and analyze the parameters of the respective subcodes that still have a cyclic orbital structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.