Areas 24a and 24b of the anterior cingulate cortex (ACC) play a major role in cognition, emotion and pain. While their connectivity has been studied in primate and in rat, a complete mapping was still missing in the mouse. Here, we analyzed the afferents to the mouse ACC by injecting retrograde tracers in the ventral and dorsal areas of the ACC (areas 24a/b) and of the midcingulate cortex (MCC; areas 24a'/b'). Our results reveal inputs from five principal groups of structures: (1) cortical areas, mainly the orbital, medial prefrontal, retrosplenial, parietal associative, primary and secondary sensory areas and the hippocampus, (2) basal forebrain, mainly the basolateral amygdaloid nucleus, the claustrum and the horizontal limb of the diagonal band of Broca, (3) the thalamus, mainly the anteromedial, lateral mediodorsal, ventromedial, centrolateral, central medial and reuniens/rhomboid nuclei, (4) the hypothalamus, mainly the lateral and retromammillary areas, and (5) the brainstem, mainly the monoaminergic centers. The neurochemical nature of inputs from the diagonal band of Broca and brainstem centers was also investigated by double-labeling, showing that only a part of these afferents were cholinergic or monoaminergic. Comparisons between the areas indicate that areas 24a and 24b receive qualitatively similar inputs, but with different densities. These differences are more pronounced when comparing the inputs to ACC's areas 24a/24b to the inputs to MCC's areas 24a'/24b'. These results provide a complete analysis of the afferents to the mouse areas 24a/24b and 24a'/24b', which shows important similarity with the connectivity of homologous areas in rats, and brings the anatomical basis necessary to address the roles of cingulate areas in mice.
Diabetes is far more prevalent in smokers than non-smokers, but little is known about underlying mechanisms of vulnerability. Here, we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb), where it regulates the function of nicotinic acetylcholine receptors. Inhibition of Tcf7l2 signaling in the mHb increases nicotine intake in mice and rats. Nicotine elevates blood glucose levels through a Tcf7l2-dependent stimulatory action on the mHb. Virus tracing identifies a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show elevated circulating levels of glucagon and insulin and diabetes-like dysregulation of blood glucose homeostasis. In contrast, Tcf7l2 mut rats are resistant to these actions of nicotine. Our findings suggest that Tcf7l2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.
The anterior cingulate cortex (ACC), constituted by areas 25, 32, 24a and 24b in rodents, plays a major role in cognition, emotion and pain. In a previous study, we described the afferents of areas 24a and 24b and those of areas 24a' and 24b' of midcingulate cortex (MCC) in mice and highlighted some density differences among cingulate inputs (Fillinger et al., Brain Struct Funct 222:1509-1532, 2017). To complete this connectome, we analyzed here the efferents of ACC and MCC by injecting anterograde tracers in areas 24a/24b of ACC and 24a'/24b' of MCC. Our results reveal a common projections pattern from both ACC and MCC, targeting the cortical mantle (intracingulate, retrosplenial and parietal associative cortex), the non-cortical basal forebrain, (dorsal striatum, septum, claustrum, basolateral amygdala), the hypothalamus (anterior, lateral, posterior), the thalamus (anterior, laterodorsal, ventral, mediodorsal, midline and intralaminar nuclei), the brainstem (periaqueductal gray, superior colliculus, pontomesencephalic reticular formation, pontine nuclei, tegmental nuclei) and the spinal cord. In addition to an overall denser ACC projection pattern compared to MCC, our analysis revealed clear differences in the density and topography of efferents between ACC and MCC, as well as between dorsal (24b/24b') and ventral (24a/24a') areas, suggesting a common functionality of these two cingulate regions supplemented by specific roles of each area. These results provide a detailed analysis of the efferents of the mouse areas 24a/24b and 24a'/24b' and achieve the description of the cingulate connectome, which bring the anatomical basis necessary to address the roles of ACC and MCC in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.