Accurate prediction of progression in subjects at risk of Alzheimer's disease is crucial for enrolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art algorithms for predicting disease onset and progression is currently lacking. We present the findings of The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guessing. On a limited, cross-sectional subset of the data emulating clinical trials, performance of best algorithms at predicting clinical diagnosis decreased only slightly (3% error increase) compared to the full longitudinal dataset. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as patient-specific biomarker trends. The submission system remains open via the website https://tadpole.grand-challenge.org, while code for submissions is being collated by TADPOLE SHARE: https://tadpole-share.github.io/. Our work suggests that current prediction algorithms are accurate for biomarkers related to clinical diagnosis and ventricle volume, opening up the possibility of cohort refinement in clinical trials for Alzheimer's disease.
Cognate prediction is the task of generating, in a given language, the likely cognates of words in a related language, where cognates are words in related languages that have evolved from a common ancestor word. It is a task for which little data exists and which can aid linguists in the discovery of previously undiscovered relations. Previous work has applied machine translation (MT) techniques to this task, based on the tasks' similarities, without, however, studying their numerous differences or optimising architectural choices and hyper-parameters. In this paper, we investigate whether cognate prediction can benefit from insights from low-resource MT. We first compare statistical MT (SMT) and neural MT (NMT) architectures in a bilingual setup. We then study the impact of employing data augmentation techniques commonly seen to give gains in low-resource MT: monolingual pretraining, backtranslation and multilinguality. Our experiments on several Romance languages show that cognate prediction behaves only to a certain extent like a standard lowresource MT task. In particular, MT architectures, both statistical and neural, can be successfully used for the task, but using supplementary monolingual data is not always as beneficial as using additional language data, contrarily to what is observed for MT.
Character-based neural machine translation models have become the reference models for cognate prediction, a historical linguistics task. So far, all linguistic interpretations about latent information captured by such models have been based on external analysis (accuracy, raw results, errors). In this paper, we investigate what probing can tell us about both models and previous interpretations, and learn that though our models store linguistic and diachronic information, they do not achieve it in previously assumed ways.
Cognates and borrowings carry different aspects of etymological evolution. In this work, we study semantic change of such items using multilingual word embeddings, both static and contextualised. We underline caveats identified while building and evaluating these embeddings. We release both said embeddings and a newly-built historical words lexicon, containing typed relations between words of varied Romance languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.