We densely genotyped, using 1000 Genomes Project pilot CEU and additional re-sequencing study variants, 183 reported immune-mediated disease non-HLA risk loci in 12,041 celiac disease cases and 12,228 controls. We identified 13 new celiac disease risk loci at genome wide significance, bringing the total number of known loci (including HLA) to 40. Multiple independent association signals are found at over a third of these loci, attributable to a combination of common, low frequency, and rare genetic variants. In comparison with previously available data such as HapMap3, our dense genotyping in a large sample size provided increased resolution of the pattern of linkage disequilibrium, and suggested localization of many signals to finer scale regions. In particular, 29 of 54 fine-mapped signals appeared localized to specific single genes - and in some instances to gene regulatory elements. We define a complex genetic architecture of risk regions, and refine risk signals, providing a next step towards elucidating causal disease mechanisms.
Recent genetic studies have revealed shared immunological mechanisms in several immune-related disorders that further our understanding of the development and concomitance of these diseases. Our Review focuses on these shared aspects, using the novel findings of recently performed genome-wide association studies and non-synonymous SNP scans as a starting point. We discuss how identifying new genes that are associated with more than one autoimmune or chronic inflammatory disorder could explain the genetic basis of the shared pathogenesis of immune-related diseases. This analysis helps to highlight the key molecular pathways that are involved in these disorders and the potential roles of novel genes in immune-related diseases.
Candida albicans is the most common human fungal pathogen causing mucosal and systemic infections. However, human antifungal immunity remains poorly defined. Here, by integrating transcriptional analysis and functional genomics, we identified Candida-specific host defense mechanisms in humans. Candida induced significant expression of genes from the type I interferon (IFN) pathway in human peripheral blood mononuclear cells. This unexpectedly prominent role of type I IFN pathway in anti-Candida host defense was supported by additional evidence. Polymorphisms in type I IFN genes modulated Candida-induced cytokine production and were correlated with susceptibility to systemic candidiasis. In in-vitro experiments, type I IFNs skewed Candida-induced inflammation from a Th17-response toward a Th1-response. Patients with chronic mucocutaneaous candidiasis displayed defective expression of genes in the type I IFN pathway. These findings indicate that the type I IFN pathway is a main signature of Candida-induced inflammation and plays a crucial role in anti-Candida host defense in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.