In the macroscopic world, ecological interactions between multiple species of fauna and flora are recognised as major role-players in the evolution of any particular species. By comparison, research on ecological interactions as a driver of evolutionary adaptation in microbial ecosystems has been neglected. The evolutionary history of the budding yeast Saccharomyces cerevisiae has been extensively researched, providing an unmatched foundation for exploring adaptive evolution of microorganisms. However, in most studies, the habitat is only defined by physical and chemical parameters, and little attention is paid to the impact of cohabiting species. Such ecological interactions arguably provide a more relevant evolutionary framework. Within the genomic phylogenetic tree of S. cerevisiae strains, wine associated isolates form a distinct clade, also matched by phenotypic evidence. This domestication signature in genomes and phenomes suggests that the wine fermentation environment is of significant evolutionary relevance. Data also show that the microbiological composition of wine fermentation ecosystems is dominated by the same species globally, suggesting that these species have co-evolved within this ecosystem. This system therefore presents an excellent model for investigating the origins and mechanisms of interspecific yeast interactions. This review explores the role of biotic stress in the adaptive evolution of wine yeast.
Higher-order interactions are one of the major blind spots in our understanding of microbial ecosystems. These systems remain largely unpredictable and are characterized by nonlinear dynamics, in particular when the system is comprised of more than two entities.
Objective
Glucuronoyl esterase (GE) is an emerging enzyme that improves fractionation of lignin-carbohydrate complexes. However, the commercial availability of GE is limited, which hinders the research of GE-based bioprocesses for its industrial application in lignocellulose biorefineries. This study evaluated a workable, cost-effective, and commercially scalable production strategy to improve the ease of GE-based research. This strategy consisted of a constitutive and methanol-free enzyme production step coupled with a two-step filtration process. The aim was to determine if this strategy can yield copious amounts of GE, by secretion into the extracellular medium with an acceptable purity that could allow its direct application. This approach was further validated for cellobiose dehydrogenase, another emerging lignocellulose degrading enzyme which is scarcely available at high cost.
Results
The secreted recombinant enzymes were functionally produced in excess of levels previously reported for constitutive production (1489–2780 mg L−1), and were secreted at moderate to high percentages of the total extracellular protein (51–94%). The constant glycerol feed, implemented during fed-batch fermentation, lead to a decline in growth rate and plateaued productivity. Tangential flow ultrafiltration was used to concentrate cell-free enzyme extracts 5–6-fold, reaching enzyme activity levels (1020–202 U L−1) that could allow their direct application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.