Biomarker analysis has become routine practice in the treatment of non-small cell lung cancer (NSCLC). To ensure high quality testing, participation to external quality assessment (EQA) schemes is essential. This article provides a longitudinal overview of the EQA performance for EGFR, ALK, and ROS1 analyses in NSCLC between 2012 and 2015.The four scheme years were organized by the European Society of Pathology according to the ISO 17043 standard. Participants were asked to analyze the provided tissue using their routine procedures.Analysis scores improved for individual laboratories upon participation to more EQA schemes, except for ROS1 immunohistochemistry (IHC). For EGFR analysis, scheme error rates were 18.8%, 14.1% and 7.5% in 2013, 2014 and 2015 respectively. For ALK testing, error rates decreased between 2012 and 2015 by 5.2%, 3.2% and 11.8% for the fluorescence in situ hybridization (FISH), FISH digital, and IHC subschemes, respectively. In contrast, for ROS1 error rates increased between 2014 and 2015 for FISH and IHC by 3.2% and 9.3%. Technical failures decreased over the years for all three markers.Results show that EQA contributes to an ameliorated performance for most predictive biomarkers in NSCLC. Room for improvement is still present, especially for ROS1 analysis.
The indicators support the clinicians in choosing molecular pathology laboratories by improving quality assurance and guaranteeing patient safety. Accreditation of laboratories, centralisation of biomarker testing or a university and research setting should be stimulated.
BackgroundMolecular analysis of circulating tumour DNA (ctDNA) is becoming increasingly important in clinical treatment decisions. A pilot External Quality Assessment (EQA) scheme for ctDNA analysis was organized by four European EQA providers under the umbrella organization IQN Path, in order to investigate the feasibility of delivering an EQA to assess the detection of clinically relevant variants in plasma circulating cell-free DNA (cfDNA) and to analyze reporting formats.MethodsThirty-two experienced laboratories received 5 samples for EGFR mutation analysis and/or 5 samples for KRAS and NRAS mutation analysis. Samples were artificially manufactured to contain 3 mL of human plasma with 20 ng/mL of fragmented ctDNA and variants at allelic frequencies of 1 and 5%.ResultsThe scheme error rate was 20.1%. Higher error rates were observed for RAS testing when compared to EGFR analysis, for allelic frequencies of 1% compared to 5%, and for cases including 2 different variants. The reports over-interpreted wild-type results and frequently failed to comment on the amount of cfDNA extracted.ConclusionsThe pilot scheme demonstrated the feasibility of delivering a ctDNA EQA scheme and the need for such a scheme due to high error rates in detecting low frequency clinically relevant variants. Recommendations to improve reporting of cfDNA are provided.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4694-x) contains supplementary material, which is available to authorized users.
Liquid biopsy testing is a new laboratory-based method that detects tumour mutations in circulating free DNA (cfDNA) derived from minimally invasive blood sampling techniques. Recognising the significance for clinical testing, in 2017, IQN Path provided external quality assessment for liquid biopsy testing. Representatives of those participating laboratories were invited to attend a workshop to discuss the findings and how to achieve quality implementation of cfDNA testing in the clinical setting, the discussion and outcomes of this consensus meeting are described below. Predictive molecular profiling using tumour tissue in order to select cancer patients eligible for targeted therapy is now routine in diagnostic pathology. If insufficient tumour tissue material is available, in some circumstances, recent European Medicines Agency (EMA) guidance recommends mutation testing with plasma cfDNA. Clinical applications of cfDNA include treatment selection based on clinically relevant mutations derived from pre-treatment samples and the detection of resistant mutations upon progression of the disease. In order to identify tumour-related mutations in amongst other nucleic acid material found in plasma samples, highly sensitive laboratory methods are needed. In the workshop, we discussed the variable approaches taken with regard to cfDNA extraction methods, the tests, and considered the impact of false-negative test results. We explored the lack of standardisation of complex testing procedures ranging from plasma collection, transport, processing and storage, cfDNA extraction, and mutation analysis, to interpretation and reporting of results. We will also address the current status of clinical validation and clinical utility, and its use in current diagnosis. This workshop revealed a need for guidelines on with standardised procedures for clinical cfDNA testing and reporting, and a requirement for cfDNA-based external quality assessment programs.
Neoplastic cell content determination is crucial for biomarker testing. It is known that interobserver variation exists, but largescale data are missing about variation in tumor delineation and cell content determination. Results were obtained from the external quality assessment program for metastatic colorectal cancer from the European Society of Pathology (N = 5776 observations). The study included three parts: current practices were surveyed, neoplastic cell content estimations and delineations were retrieved from stained slides, and clinical reports were analyzed. Seventeen of 43 pathologists determined the neoplastic cell content in a tumor-rich area for DNA extraction and took immune cells (n = 37), tumor cell distribution (n = 33), desmoplastic stroma (n = 30), necrosis (n = 29), and mucus (n = 23) into account. The selected area was highly variable, and the average difference between the highest and lowest estimation ranged between 51% and 78% (2011 to 2017). The number of overestimations was alarmingly high in samples containing <30% tumor cells. Of concern is that 33 of 105 laboratories reported a wild-type result in a sample without tumor in 2017. Standardization of neoplastic cell content determination is needed for test outcome interpretation. The authors' data show variation in estimation practices, tumor delineations and estimations, and interpretation problems (n = 226 reports). Further training for selecting the most suitable block and creating clear reports is urgently needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.