Background Brain areas interact mutually to perform particular complex brain functions such as memory or language. Furthermore, under resting-state conditions several spatial patterns have been identified that resemble functional systems involved in cognitive functions. Among these, the default-mode network (DMN), which is consistently deactivated during task periods and is related to a variety of cognitive functions, has attracted most attention. In addition, in resting-state conditions some brain areas engaged in focused attention (such as the anticorrelated network, AN) show a strong negative correlation with DMN; as task demand increases, AN activity rises, and DMN activity falls. Objective We combined transcranial direct current stimulation (tDCS) with functional magnetic resonance imaging (fMRI) to investigate these brain network dynamics. Methods Ten healthy young volunteers underwent four blocks of resting-state fMRI (10-minutes), each of them immediately after 20 minutes of sham or active tDCS (2 mA), on two different days. On the first day the anodal electrode was placed over the left dorsolateral prefrontal cortex (DLPFC) (part of the AN) with the cathode over the contralateral supraorbital area, and on the second day, the electrode arrangement was reversed (anode right-DLPFC, cathode left-supraorbital). Results After active stimulation, functional network connectivity revealed increased synchrony within the AN components and reduced synchrony in the DMN components. Conclusions Our study reveals a reconfiguration of intrinsic brain activity networks after active tDCS. These effects may help to explain earlier reports of improvements in cognitive functions after anodal-tDCS, where increasing cortical excitability may have facilitated reconfiguration of functional brain networks to address upcoming cognitive demands.
Deterioration of motor and cognitive performance with advancing age is well documented, but its cause remains unknown. Animal studies dating back to the late 1970s reveal that age-associated neurocognitive changes are linked to age-dependent changes in synaptic plasticity, including alterations of long-term potentiation and depression (LTP and LTD). Non-invasive brain stimulation techniques enable measurement of LTP- and LTD-like mechanisms of plasticity, in vivo, in humans, and may thus provide valuable insights. We examined the effects of a 40-s train of continuous theta-burst stimulation (cTBS) to the motor cortex (600 stimuli, three pulses at 50 Hz applied at a frequency of 5 Hz) on cortico-spinal excitability as measured by the motor evoked potentials (MEPs) induced by single-pulse transcranial magnetic stimulation before and after cTBS in the contralateral first dorsal interosseus muscle. Thirty-six healthy individuals aged 19–81 years old were studied in two sites (Boston, USA and Barcelona, Spain). The findings did not differ across study sites. We found that advancing age is negatively correlated with the duration of the effect of cTBS (r = −0.367; p = 0.028) and the overall amount of corticomotor suppression induced by cTBS (r = −0.478; p = 0.003), and positively correlated with the maximal suppression of amplitude on motor evoked responses in the target muscle (r = 0.420; p = 0.011). We performed magnetic resonance imaging (MRI)-based individual morphometric analysis in a subset of subjects to demonstrate that these findings are not explained by age-related brain atrophy or differences in scalp-to-brain distance that could have affected the TBS effects. Our findings provide empirical evidence that the mechanisms of cortical plasticity area are altered with aging and their efficiency decreases across the human lifespan. This may critically contribute to motor and possibly cognitive decline.
Evidence from neuroimaging and electrophysiological studies indicates that the left dorsolateral prefrontal cortex (DLPFC) is a core region in emotional processing, particularly during down-regulation of negative emotional conditions. However, emotional regulation is a process subject to major inter-individual differences, some of which may be explained by personality traits. In the present study we used transcranial direct current stimulation (tDCS) over the left DLPFC to investigate whether transiently increasing the activity of this region resulted in changes in the ratings of positive, neutral and negative emotional pictures. Results revealed that anodal, but not cathodal, tDCS reduced the perceived degree of emotional valence for negative stimuli, possibly due to an enhancement of cognitive control of emotional expression. We also aimed to determine whether personality traits (extraversion and neuroticism) might condition the impact of tDCS. We found that individuals with higher scores on the introversion personality dimension were more permeable than extraverts to the modulatory effects of the stimulation. The present study underlines the role of the left DLPFC in emotional regulation, and stresses the importance of considering individual personality characteristics as a relevant variable, although replication is needed given the limited sample size of our study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.