Deep brain stimulation (DBS) is a neuromodulatory treatment used in patients with drug-resistant epilepsy (DRE). The primary goal of this systematic review and metaanalysis is to describe recent advancements in the field of DBS for epilepsy, to compare the results of published trials, and to clarify the clinical utility of DBS in DRE. A systematic literature search was performed by two independent authors. Forty-four articles were included in the meta-analysis (23 for anterior thalamic nucleus [ANT], 8 for centromedian thalamic nucleus [CMT], and 13 for hippocampus) with a total of 527 patients. The mean seizure reduction after stimulation of the ANT, CMT, and hippocampus in our meta-analysis was 60.8%, 73.4%, and 67.8%, respectively. DBS is an effective and safe therapy in patients with DRE. Based on the results of randomized controlled trials and larger clinical series, the best evidence exists for DBS of the anterior thalamic nucleus. Further randomized trials are required to clarify the role of CMT and hippocampal stimulation. Our analysis suggests more efficient deep brain stimulation of ANT for focal seizures, wider use of CMT for generalized seizures, and hippocampal DBS for temporal lobe seizures. Factors associated with clinical outcome after DBS for epilepsy are electrode location, stimulation parameters, type of epilepsy, and longer time of stimulation. Recent advancements in anatomical targeting, functional neuroimaging, responsive neurostimulation, and sensing of local field potentials could potentially lead to improved outcomes after DBS for epilepsy and reduced sudden, unexpected death of patients with epilepsy. Biomarkers are needed for successful patient selection, targeting of electrodes and optimization of stimulation parameters.
Excessive inflammation and apoptosis contribute to the pathogenesis of ischemic stroke. MFG-E8 is a 66-kDa glycoprotein that has shown tissue protection in various models of organ injury. However, the potential role of MFG-E8 in cerebral ischemia has not been investigated. We found that levels of MFG-E8 protein in the brain were reduced at 24 h after cerebral ischemia. To assess the potential role of MFG-E8 in cerebral ischemia, adult male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO). At 1 h post-stroke onset, an intravenous administration of 1 ml saline as vehicle or 160 μg/kg BW recombinant human MFG-E8 (rhMFG-E8) as treatment was given. The optimal dose of rhMFG-E8 was obtained from previous dose-response organ protection in rat sepsis studies. Neurological scores were determined at 24 h and 48 h post-MCAO. Rats were sacrificed thereafter and brains rapidly removed and analyzed for infarct size, histopathology, and markers of inflammation and apoptosis. Compared with saline vehicle, rhMFG-E8 treatment led to significant decreases in sensorimotor and vestibulomotor deficits, and infarct size at 24 h and 48 h post-MCAO. Measures associated with improved outcome included reduced microglial inflammatory cytokine secretion, adhesion molecules and neutrophil influx, cleaved caspase-3, and upregulation of peroxisome proliferator activated receptor-γ (PPAR-γ), and Bcl-2/Bax ratio leading to decreased apoptosis. Thus, rhMFG-E8 treatment is neuroprotective against cerebral ischemia through suppression of inflammation and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.