The advent of COVID-19, has posed a risk that human respiratory samples containing human influenza viruses may also contain SARS-CoV-2. This potential risk may lead to SARS-CoV-2 contaminating conventional influenza vaccine production platforms as respiratory samples are used to directly inoculate embryonated hen’s eggs and continuous cell lines that are used to isolate and produce influenza vaccines. We investigated the ability of these substrates to propagate SARS-CoV-2 and found that neither could support SARS-CoV-2 replication.
Influenza vaccines are utilised to combat seasonal and pandemic influenza. The key to influenza vaccination currently is the availability of candidate vaccine viruses (CVVs). Ideally, CVVs reflect the antigenic characteristics of the circulating virus, which may vary depending upon the isolation method. For traditional inactivated egg-based vaccines, CVVs are isolated in embryonated chicken eggs, while for cell-culture production, CVV’s are isolated in either embryonated eggs or qualified cell lines. We compared isolation rates, growth characteristics, genetic stability and antigenicity of cell and egg CVV’s derived from the same influenza-positive human clinical respiratory samples collected from 2008–2020. Influenza virus isolation rates in MDCK33016PF cells were twice that of eggs and mutations in the HA protein were common in egg CVVs but rare in cell CVVs. These results indicate that fully cell-based influenza vaccines will improve the choice, match and potentially the effectiveness, of seasonal influenza vaccines compared to egg-based vaccines.
As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 3993 human influenza-positive samples during 2018. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or hens’ eggs for use as potential seasonal influenza vaccine virus candidates. In 2018, influenza A(H1)pdm09 viruses predominated over influenza A(H3) and B viruses, accounting for a total of 53% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO-recommended vaccine strains for the Southern Hemisphere in 2018. However, phylogenetic analysis indicated that a significant proportion of circulating A(H3) viruses had undergone genetic drift relative to the WHO-recommended vaccine strain for 2018. Of 2864 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, three A(H1)pdm09 viruses showed highly reduced inhibition by oseltamivir, while one B/Victoria virus showed highly reduced inhibition by both oseltamivir and zanamivir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.