Auxin and polar auxin transport have been implicated in controlling zygotic embryo development, but less is known about their role in the development of somatic embryos. The aim of this study was to determine if indole-3-acetic acid (IAA) and the PIN1 transporter participate in the induction of somatic embryogenesis (SE) and the development of somatic embryos. The results show that IAA levels gradually increase during pre-treatment and accumulate in the chloroplast. During pre-treatment and the globular stage of SE in C. canephora, auxin is distributed uniformly in all of the cells of the somatic embryo. During the subsequent stages of development, auxins are mobilized to the cells that will form the cotyledons and the root meristem. The location of the PIN transporters shifts from the plasmalemma of the protoderm cells during the globular stage to the plasmalemma of the cells that will give rise to the cotyledons and the vascular tissue in the late stages of somatic embryogenesis. The incubation of the explants in the presence of 2,3,5-triiodobenzoic acid (TIBA) produced aberrant somatic embryos, suggesting that PIN1 mediates the transport of IAA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.