Research using microwaves (MWs) to detect pipe wall thinning (PWT) distinguishes the presence of wall thinning, but does not accurately locate the discontinuities. Ultrasonic testing (UT) is capable of accurately locating the PWT defect, but cannot do so without time-consuming linear scanning. This novel work combines the MW technique as a way to predict the location of a series of PWT specimens, and the UT technique as a way to characterize the PWT specimens in terms of location, depth, and profile shape. The UT probe is guided to the predicted location derived from the Phase One MW results, generating the Phase Two results to determine accurate location, depth measurement, and profile shape detection. The work uses the previously successful experimental setup for testing of an aluminum pipe with 154.051 mm inner diameter (ID) and 1 m length. A vector network analyzer (VNA) generates a MW sweeping frequency range of 1.4–2.3 GHz. This signal is propagated within reference pipes with both open end and short-circuit configurations for calibration of the system. The calibrated system is used to detect the presence and location of six PWT specimens, with two profile shapes, at three depths of thinning and three locations along the pipe. The predicted locations from Phase One are then used to guide a calibrated, manually guided straight beam UT probe to the predicted position. From that point, the UT probe is used in order to accurately localize and determine the depth and shape profile of the specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.