This paper describes a parallel method to generate polymer nanowrinkles over large areas with wavelengths that were continuously tuned down to 30 nm. Reactive ion etching using fluorinated gases was used to chemically treat thermoplastic polystyrene films, which resulted in a stiff skin layer. Upon heating, the treated thermoplastic, microscale, and nanoscale wrinkles were formed. We used variable-angle spectroscopic ellipsometry to characterize the thickness of the skin layer; this thickness could then be used to predict and control the nanowrinkle wavelength. Because the properties of these nanotextured polymer surfaces can be tuned over a large range of wrinkle wavelengths, they are promising for a broad range of applications, especially those that require large-area and uniform surface patterning.
This paper describes how delamination-free, hierarchical patterning of graphene can be achieved on prestrained thermoplastic sheets by surface wrinkling. Conformal contact between graphene and the substrate during strain relief was maintained by the presence of a soft skin layer, resulting in the uniform patterning of three-dimensional wrinkles over large areas (>cm). The graphene wrinkle wavelength was tuned from the microscale to the nanoscale by controlling the thickness of the skin layer with 1 nm accuracy to realize a degree of control not possible by crumpling, which relies on delamination. Hierarchical patterning of the skin layers with varying thicknesses enabled multiscale graphene wrinkles with predetermined orientations to be formed. Significantly, hierarchical graphene wrinkles exhibited tunable mechanical stiffness at the nanoscale without compromising the macroscale electrical conductivity.
This paper describes how a memory-based, sequential wrinkling process can transform flat polystyrene sheets into multiscale, three-dimensional hierarchical textures. Multiple cycles of plasma-mediated skin growth followed by directional strain relief of the substrate resulted in hierarchical architectures with characteristic generational (G) features. Independent control over wrinkle wavelength and wrinkle orientation for each G was achieved by tuning plasma treatment time and strain-relief direction for each cycle. Lotus-type superhydrophobicity was demonstrated on three-dimensional G1-G2-G3 hierarchical wrinkles as well as tunable superhydrophilicity on these same substrates after oxygen plasma. This materials system provides a general approach for nanomanufacturing based on bottom-up sequential wrinkling that will benefit a diverse range of applications and especially those that require large area (>cm(2)), multiscale, three-dimensional patterns.
This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal.
We describe herein how to control the orientation of polymer nanowrinkles and nanofolds with large amplitudes. Nanowrinkles were created by chemically treating thermoplastic polystyrene sheets to form a thin skin layer and then heating the substrate to relieve strain. By manipulating the strain globally and locally in the skin layer, we could tune whether wrinkles or folds formed, as well as the distances over which these structures could be produced. This unique materials system provided access to high strain regimes, which enabled mechanisms behind the spontaneous formation of complex structures to be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.