pvlib python is a community-supported open source tool that provides a set of functions and classes for simulating the performance of photovoltaic energy systems. pvlib python aims to provide reference implementations of models relevant to solar energy, including for example algorithms for solar position, clear sky irradiance, irradiance transposition, DC power, and DC-to-AC power conversion. pvlib python is an important component of a growing ecosystem of open source tools for solar energy (William F. Holmgren, Hansen, Stein, & Mikofski, 2018).
NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Executive Summary Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content. ii List of Acronyms AC alternating current DC direct current EPC engineering, procurement, and construction PAC provisional acceptance certificate POA plane of array PR performance ratio PV photovoltaic RTD resistance temperature detector STC standard test conditions TMY typical meteorological year iii
We present a simple algorithm for identifying periods of time with broadband GHI similar to that occurring during clear sky conditions from a time series of global horizontal irradiance (GHI) measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from a clear sky detection algorithm, and with satellite and ground-based sky imagery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.