Respiratory volumes and timing have been measured in 19 healthy adults during wakefulness and sleep. Minute ventilation was significantly less (p < 0 05) in all stages of sleep than when the subject was awake (7*66 ± 0 34(SEM) 1/min), the level in rapid-eye-movement (REM) sleep (6-46 ± 0-29 1/min) being significantly lower than in non-REM sleep (7 18 ± 0O39 1/min). The breathing pattern during all stages of sleep was significantly more rapid and shallow than during wakefulness, tidal volume in REM sleep being reduced to 73% of the level during wakefulness. Mean inspiratory flow rate (VT/Ti), an index of inspiratory drive, was significantly lower in REM sleep than during wakefulness or non-REM sleep. Thus ventilation falls during sleep, the greatest reduction occurring during REM sleep, when there is a parallel reduction in inspiratory drive. Similar changes in ventilation may contribute to the REM-associated hypoxaemia observed in normal subjects and in patients with chronic obstructive pulmonary disease.The identification of patients with sleep-related disorders of breathing and oxygenation' 2 has heightened interest in breathing during sleep in both patients3-5 and normal subjects.6 Although some of these events have a clear relationship to EEG sleep stage, appreciable oxygen desaturation occurring almost exclusively in rapid-eyemovement (REM) sleep in chronic obstructive pulmonary disease,245 there have been few studies7 8 of ventilation in normal adult man during sleep with electroencephalographic documentation of sleep stage. In addition, minute ventilation has never been measured during REM sleep in adult man.To try to understand the pathophysiology of these sleep-related breathing abnormalities, we have compared expired volumes and respiratory timing in normal adults during wakefulness with those in the different electroencephalographic stages of sleep. MethodsNineteen healthy adults were studied, eight men (mean age 32-4 ± 1 8 (SEM) years) and 11 women (26-5 ± 1-3 years). None of the subjects was obese or had any sleep complaints, and none was taking oral contraceptives or any other medication. All subjects had resided for at least six months in Denver (altitude 1600 m), where the studies were performed. Each subject was a regular nocturnal sleeper and all studies were performed between 10 pm and 7 am without prior sleep deprivation. Every subject gave informed consent to the study, which had the approval of the institute's human subject research committee.
Arousal from sleep in response to asphyxia can be a lifesaving event. However, the mechanisms responsible for this important arousal response are uncertain. A unifying hypothesis is that arousal results from the increased respiratory effort that occurs as a result of ventilatory stimulation. If this is true, the magnitude of this effort during the breaths immediately preceding arousal from sleep should be similar regardless of the stimulus. Therefore, the negative inspiratory pleural pressure during the breaths preceding arousal would be similar, whether stimulated by added inspiratory resistive load, hypoxia, or hypercapnia. To test this hypothesis, we studied eight young, healthy men during full-night sleep studies. We measured their electroencephalography (EEG), electromyography (EMG), electrooculography (EOG), inspired ventilation (VI), end tidal PCO2 (PETCO2), O2 saturation, and esophageal pressure (esophageal balloon) while inducing arousal from non-REM sleep using (1) a 30-cm H2O/L/s added resistive load, (2) progressive hypoxia, and (3) progressive hyperoxic hypercapnia. All subjects were eventually aroused following the addition of the 30-cm H2O/L/s added load and during progressive hypercapnia. However, only six of the eight men were aroused when the O2 saturation was reduced to a minimum of 70%. For each stimulus, arousal occurred at very different levels of ventilation and arterial chemistry (SaO2 and CO2). However, ventilatory effort for each subject was similar at the point of arousal regardless of the stimulus. The peak-negative esophageal pressure for the single inspiration preceding arousal (for the six subjects arousing with all three stimuli) was 16.8 +/- 1.4 cm H2O for added resistive load, 15.0 +/- 2.4 cm H2O for hypoxia, and 14.7 +/- 2.1 cm H2O for hypercapnia. We conclude that increasing ventilatory effort may be the stimulus to arousal from sleep independent of the source of this rising drive to breathe.
Obstructive sleep apnea (OSA) is associated with oscillations of arterial blood pressure (BP) that occur in phase with irregularities of respiration. To explore the role of the sympathetic nervous system in these responses, we studied muscle sympathetic nerve activity (MSNA; peroneal microneurography), an index of vasoconstrictor nerve traffic, and BP during awake regular breathing and during spontaneous apneas in patients with OSA. To determine the role of the arterial chemoreflex, we also examined the effects of 100% O2 (hyperoxia) on MSNA and BP. In awake regularly breathing patients with OSA (n = 12), resting MSNA was markedly higher than in an age-matched control population (n = 15) [41 +/- 23 (SD) vs. 24 +/- 17 bursts/min; P < 0.05] and was unchanged during hyperoxia (n = 9). Apneas during sleep (n = 8) were associated with surges in MSNA followed by transient rises in BP when breathing resumed. In contrast to room air apneas, hyperoxic apneas of similar duration were associated with attenuated MSNA responses (+82 +/- 84% vs. +5 +/- 25% compared with awake baseline; P < 0.05; n = 6), even though O2 did not affect sleep stage and the occurrence of arousal. Thus the BP oscillations that occur with apnea during sleep may in part be mediated by intermittent surges of sympathetic activity resulting in vasoconstriction. Because the MSNA responses to obstructive apnea are blunted during O2 administration, they appear to be linked to intermittent arterial hypoxemia and stimulation of arterial chemoreceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.