Naturally assembling cocrystallates of C 60 and C 70 fullerenes with tetraphenylporphyrins (H 2 TPP‚C 60 ‚3 toluene, 1; H 2 T 3,5-dibutyl PP‚C 60 , 2; H 2 T 3,5-dimethyl PP‚1.5C 60 ‚2 toluene, 3; H 2 T piv PP‚C 60 , 4; H 2 T 3,5-dimethyl PP‚C 70 ‚4 toluene, 5; ZnTPP‚C 70 , 6; NiT 4-methyl PP‚2C 70 ‚2 toluene, 7) show unusually short porphyrin/fullerene contacts (2.7-3.0 Å) compared with typical π-π interactions (3.0-3.5 Å). In the C 60 structures, an electron-rich, 6:6 ring juncture, C-C bond lies over the center of the porphyrin ring. In the C 70 structures, the ellipsoidal fullerene makes porphyrin contact at its equator rather than its poles; a carbon atom from three fused six-membered rings lies closest to the center of the porphyrin. These structures provide an explanation for the manner in which tetraphenylporphyrin-appended silica stationary phases effect the chromatographic separation of fullerenes. The interaction of the curved π surface of a fullerene with the planar π surface of a porphyrin, without the need for matching convex with concave surfaces, represents a new recognition element in supramolecular chemistry. NMR measurements show that this interaction persists in toluene solution, suggesting a simple way to assemble van der Waals complexes of donor-acceptor chromophores.
Large, inert, weakly basic carborane anions of the icosahedral type CHB11R5X6 - (R = H, Me; X = Cl, Br) allow ready isolation and structural characterization of discrete salts of the solvated proton, [H(solvent) x ][CHB11R5X6], (solvent = common O-atom donor). These oxonium ion Brønsted acids are convenient reagents for the tuned delivery of protons to organic solvents with a specified number of donor solvent molecules and with acidities leveled to those of the chosen donor solvent. They have greater thermal stability than the popular [H(OEt2)2][BArF] acids based on fluorinated tetraphenylborate counterions because carborane anions can sustain much higher levels of acidity. When organic O-atom donors such as diethyl ether, tetrahydrofuran, benzophenone, and nitrobenzene are involved, the coordination number of the proton (x) in [H(solvent) x ]+ is two. A mixed species involving the [H(H2O)(diethyl ether)]+ ion has also been isolated. These solid-state structures provide expectations for the predominant molecular structures of solvated protons in solution and take into account that water is an inevitable impurity in organic solvents. The O···O distances are all short, lying within the range from 2.35 to 2.48 Å. They are consistent with strong, linear O···H···O hydrogen bonding. Density functional theory calculations indicate that all H(solvent)2 + cations have low barriers to movement of the proton within an interval along the O···H···O trajectory, i.e., they are examples of so-called SSLB H-bonds (short, strong, low-barrier). Unusually broadened IR bands, diagnostic of SSLB H-bonds, are observed in these H(solvent)2 + cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.