Emerin is a conserved membrane component of nuclear lamina structure. Here, we report an advance in understanding the molecular basis of emerin function: intermolecular emerin-emerin association. There were two modes: one mediated by association of residues 170-220 in one emerin molecule to residues 170-220 in another, and the second involving residues 170-220 and 1-132. Deletion analysis showed residues 187-220 contain a positive element essential for intermolecular association in cells. By contrast, deletion of residues 168-186 inactivated a proposed negative element, required to limit or control association. Association of GFP-emerin with nuclear BAF in cells required the LEM domain (residues 1-47) and the positive element. Emerin peptide arrays revealed direct binding of residues 170-220 to residues 206-225 (the proposed positive element), residues 147-174 (particularly P 153 MYGRDSAYQSITHYRP 169 ) and the LEM domain. Emerin residues 1-132 and 159-220 were each sufficient to bind lamin A or B1 tails in vitro, identifying two independent regions of molecular contact with lamins. These results, and predicted emerin intrinsic disorder, support the hypothesis that there are multiple 'backbone' and LEM-domain configurations in a proposed intermolecular emerin network at the nuclear envelope.
SINC, a secreted effector of Chlamydia psittaci, uniquely targets the inner nuclear membrane of infected cells and uninfected neighbors. Candidate partners include ELYS, lamin B1, and four proteins of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, and chromatin organization.
Microvascular networks are vital components of the cardiovascular system, performing many key roles in maintaining the health and homeostasis of the tissues and organs in which they develop. As discussed in this review, the molecular and cellular components within the microcirculation orchestrate critical processes to establish functional capillary beds, including organization of endothelial cell (EC) polarity, guiding investment of vascular pericytes (PCs), and building the specialized extracellular matrix (ECM) that comprises the vascular basement membrane (vBM). Herein, we further discuss the unique features of the microvasculature in the central nervous system (CNS), focusing on the cells contributing to the neurovascular unit (NVU) that form and maintain the blood-brain barrier (BBB). With a focus on vascular PCs, we offer basic and clinical perspectives on neurovascular-related pathologies that involve defects within the cerebral microvasculature. Specifically, we present microvascular anomalies associated with glioblastoma multiforme (GBM) including defects in vascular-immune cell interactions and associated clinical therapies targeting microvessels (ie, vascular-disrupting/anti-angiogenic agents and focused ultrasound). We also discuss the involvement of the microcirculation in stroke responses and potential therapeutic approaches. Our goal was to compare the cellular and molecular changes that occur in the microvasculature and NVU, and to provide a commentary on factors driving disease progression in GBM and stroke. We conclude with a forward-looking perspective on the importance of microcirculation research in developing clinical treatments for these devastating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.