SUMMARYThe time-parallel framework for constructing parallel implicit time-integration algorithms (PITA) is revisited in the specific context of linear structural dynamics and near-real-time computing. The concepts of decomposing the time-domain in time-slices whose boundaries define a coarse time-grid, generating iteratively seed values of the solution on this coarse time-grid, and using them to timeadvance the solution in each time-slice with embarrassingly parallel time-integrations are maintained. However, the Newton-based corrections of the seed values, which so far have been computed in PITA and related approaches on the coarse time-grid, are eliminated to avoid artificial resonance and numerical instability. Instead, the jumps of the solution on the coarse time-grid are addressed by a projector which makes their propagation on the fine time-grid computationally feasible while avoiding artificial resonance and numerical instability. The new PITA framework is demonstrated for a complex structural dynamics problem from the aircraft industry. Its potential for near-real-time computing is also highlighted with the solution of a relatively small-scale problem on a Linux cluster system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.