NOTICEThis report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
The embrittling and strengthening effects of hydrogen, boron, and phosphorus on a ⌺5(210) ͓100͔ nickel grain boundary are investigated by means of the full-potential linearized augmented plane-wave method with the generalized-gradient approximation formula. Optimized geometries for both the free surface and grainboundary systems are obtained by atomic-force calculations. The results obtained show that hydrogen and phosphorus are embrittlers and that boron acts as a cohesion enhancer. An analysis of the atomic, electronic, and magnetic structures indicates that atomic size and the bonding behavior of the impurity with the surrounding nickel atoms play important roles in determining its relative embrittling or cohesion enhancing behavior.
The temperature-dependent diffusion coefficients of interstitial hydrogen, deuterium, and tritium in nickel are computed using transition state theory. The coefficient of thermal expansion, the enthalpy and entropy of activation, and the pre-exponential factor of the diffusion coefficient are obtained from ab initio total energy and phonon calculations including the vibrations of all atoms. Numerical results reveal that diffusion between octahedral interstitial sites occurs along an indirect path via the metastable tetrahedral site and that both the migration enthalpy and entropy are strongly temperature dependent. However, the migration enthalpy and entropy are coupled so that the diffusion coefficient is well described by a constant activation energy, i.e., D = D 0 exp͓−Q / ͑RT͔͒, with Q = 45.72, 44.09, and 43.04 kJ/ mol and D 0 = 3.84ϫ 10 −6 , 2.40ϫ 10 −6 , 1.77 ϫ 10 −6 m 2 s −1 for H, D, and T, respectively. The diffusion of deuterium and tritium is computed to be slower than that of hydrogen only at temperatures above 400 K. At lower temperatures, the order is reversed in excellent agreement with experiment. The present approach is applicable to atoms of any mass as it includes the full coupling between the vibrational modes of the diffusing atom with the host lattice.
The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.
Accurate band structures of binary semiconductors AB (A=Al, Ga, In and B=P, As, Sb) and selected ternary III–V semiconductors were calculated using an all-electron screened exchange approach within the full potential linearized augmented plane-wave method. Fundamental band gaps and Γ–L and Γ–X separations in higher-lying conduction bands are predicted with an accuracy of a few tenths of 1 eV. Screened exchange also performs better than the local density approximation for calculating conduction-band effective masses. Highly n-doped InPAs materials with compositions near InP0.2As0.8 offer lower effective masses, greater optical band-gap shifts, and potentially higher electron mobility than n-doped InGaAs materials with comparable band gaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.