Multiple mating or group spawning leads to post-copulatory sexual selection, which generally favours ejaculates that are more competitive under sperm competition. In four meta-analyses we quantify the evidence that sperm competition (SC) favours greater sperm number using data from studies of strategic ejaculation. Differential investment into each ejaculate emerges at the individual level if males exhibit phenotypic plasticity in ejaculate properties in response to the likely risk and/or intensity of sperm competition after a given mating. Over the last twenty years, a series of theoretical models have been developed that predict how ejaculate size will be strategically adjusted in relation to: (a) the number of immediate rival males, with a distinction made between 0 versus 1 rival ('risk' of SC) and 1 versus several rivals ('intensity' of SC); (b) female mating status (virgin or previously mated); and (c) female phenotypic quality (e.g. female size or condition). Some well-known studies have reported large adjustments in ejaculate size depending on the relevant social context and this has led to widespread acceptance of the claim that strategic sperm allocation occurs in response to each of these factors. It is necessary, however, to test each claim separately because it is easy to overlook studies with weak or negative findings. Compiling information on the variation in outcomes among species is potentially informative about the relevance of these assumptions in different taxa or mating systems. We found strong evidence that, on average, males transfer larger ejaculates to higher quality females. The effect of female mating status was less straightforward and depended on how ejaculate size was measured (i.e. use of proxy or direct measure). There is strong evidence that ejaculate size increased when males were exposed to a single rival, which is often described as a response to the risk of SC. There is, however, no evidence for the general prediction that ejaculate size decreases as the number of rivals increases from one to several males (i.e. in response to a higher intensity of SC which lowers the rate of return per sperm released). Our results highlight how meta-analysis can reveal unintentional biases in narrative literature reviews. We note that several assumptions of theoretical models can alter an outcome's predicted direction in a given species (e.g. the effect of female mating status depends on whether there is first- or last-male sperm priority). Many studies do not provide this background information and fail to make strong a priori predictions about the expected response of ejaculate size to manipulation of the mating context. Researchers should be explicit about which model they are testing to ensure that future meta-analyses can better partition studies into different categories, or control for continuous moderator variables.
Although females are the choosier sex in most species, male mate choice is expected to occur under certain conditions. Theoretically, males should prefer larger females as mates in species where female fecundity increases with body size. However, any fecundity‐related benefits accruing to a male that has mated with a large female may be offset by an associated fitness cost of shared paternity if large females are more likely to be multiply mated than smaller females in nature. We tested the above hypothesis and assumption using the Trinidadian guppy (Poecilia reticulata) by behaviourally testing for male mate choice in the laboratory and by ascertaining (with the use of microsatellite DNA genotyping) patterns of male paternity in wild‐caught females. We observed significant positive relationships between female body length and fecundity (brood size) and between body length and level of multiple paternity in the broods of females collected in the Quaré River, Trinidad. In laboratory tests, a preference for the larger of two simultaneously‐presented virgin females was clearly expressed only when males were exposed to the full range of natural stimuli from the females, but not when they were limited to visual stimuli alone. However, as suggested by our multiple paternity data, males that choose to mate with large females may incur a larger potential cost of sperm competition and shared paternity compared with males that mate with smaller females on average. Our results thus suggest that male guppies originating from the Quaré River possess mating preferences for relatively large females, but that such preferences are expressed only when males can accurately assess the mating status of encountered females that differ in body size.
That empirical evidence is replicable is the foundation of science. Ronald Fisher a founding father of biostatistics, recommended that a null hypothesis be rejected more than once because "no isolated experiment, however significant in itself can suffice for the experimental demonstration of any natural phenomenon" (Fisher 1974:14). Despite this demand, animal behaviorists and behavioral ecologists seldom replicate studies. This practice is not part of our scientific culture, as it is in chemistry or physics, due to a number of factors, including a general disdain by journal editors and thesis committees for unoriginal work. I outline why and how we should replicate empirical studies, which studies should be given priority, and then elaborate on why we do not engage in this necessary endeavor. I also explain how to employ various statistics to test the replicability of a series of studies and illustrate these using published studies from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.