Solution-phase hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) is a widespread tool for structural analysis across academia and the biopharmaceutical industry. By monitoring the exchangeability of backbone amide protons, HDX-MS can reveal information about higher-order structure and dynamics throughout a protein, can track protein folding pathways, map interaction sites, and assess conformational states of protein samples. The combination of the versatility of the hydrogen/deuterium exchange reaction with the sensitivity of mass spectrometry has enabled the study of extremely challenging protein systems, some of which cannot be suitably studied using other techniques. Improvements over the past three decades have continually increased throughput, robustness, and expanded the limits of what is feasible for HDX-MS investigations. To provide an overview for researchers seeking to utilize and derive the most from HDX-MS for protein structural analysis, we summarize the fundamental principles, basic methodology, strengths and weaknesses, and the established applications of HDX-MS while highlighting new developments and applications.
Hydrogen/deuterium exchange with mass spectrometry (HDX-MS) is capable of providing unique insight into complex biological systems that are difficult to study by other techniques. Due to arduous sample handling requirements, automating HDX experimentation for higher throughput requires specialized equipment. While recent advances have enabled automation of sample preparation and analysis, several proteins of interest and types of HDX experiments remain incompatible with automated workflows and require manual sample preparation that greatly limits experimental throughput. To expand throughput and increase the precision of HDX-MS for systems requiring manual preparation, we have developed an inexpensive autosampler capable of thawing and injecting frozen HDX-MS samples in a highly reproducible manner.
Hydrogen–deuterium exchange mass spectrometry (HDX-MS) is a powerful tool for protein structure analysis that is well suited for biotherapeutic development and characterization. Because HDX is strongly dependent on solution conditions, even small variations in temperature or pH can have a pronounced effect on the observed kinetics that can manifest in significant run-to-run variability and compromise reproducibility. Recent attention has been given to the development of internal exchange reporters (IERs), which directly monitor changes to exchange reaction conditions. However, the currently available small peptide IERs are only capable of sampling a very narrow temporal window and are understood to exhibit complex solution dependent exchange behavior. Here we demonstrate the use of imidazolium carbon acids as superior IERs for HDX-MS. These compounds exhibit predictable exchange behavior under a wide variety of reaction conditions, are highly stable, and can be readily modified to exchange over a broad temporal window. The use of these compounds as IERs for solution based HDX-MS could considerably extend the utility of the technique by allowing for more robust empirical exchange correction, thereby improving reproducibility.
Hydrogen/deuterium exchange with mass spectrometry (HDX-MS) is a widely used technique to probe protein structural dynamics, track conformational changes, and map protein–protein interactions. Most HDX-MS studies employ a bottom-up approach utilizing the acid active protease pepsin to digest the protein of interest, often utilizing immobilized protease in a column format. The extent of proteolytic cleavage will greatly influence data quality and presents a major source of variation in HDX-MS studies. Here, we present a simple cocktail of commonly available peptides that are substrates of pepsin and can serve as a rapid check of pepsin column activity. The peptide-based assay requires no system modifications and provides an immediate readout to check and benchmark pepsin activity across different HDX-MS platforms.
Glycosidases are phylogenetically widely distributed enzymes that are crucial for the cleavage of glycosidic bonds. In this work, we report an ancestral sequence reconstruction exercise targeting ancient nodes during the evolution of family-1 glycosidases and present the exceptional properties of a putative resurrected ancestor of bacterial and eukaryotic enzymes. The ancestral protein shares the TIM-barrel fold with its modern descendants but displays large regions with greatly enhanced conformational flexibility. Yet, the barrel core remains comparatively rigid and the ancestral glycosidase activity is stable, with an optimum temperature within the experimental range for thermophilic family-1 glycosidases. None of the $5500 reported crystallographic structures for $1400 modern glycosidases show a porphyrin ring in the enzyme. Remarkably, the ancestral glycosidase binds heme tightly and stoichiometrically at a well-defined buried site. Heme binding rigidifies this TIM-barrel and allosterically enhances catalysis. Our work demonstrates the capability of ancestral protein resurrection to reveal valuable but unusual protein features when sampling distant sequence space. The potential of the ancestral glycosidase as a scaffold for custom catalysis and biosensor engineering is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.