Widespread and repeated use of glyphosate resulted in an increase in glyphosate-resistant (GR) weeds. This led to an urgent need for diversification of weed control programs and use of PRE herbicides with alternative sites of action. Field experiments were conducted over a 4-yr period (2015 to 2018) across three locations in Nebraska to evaluate the effects of PRE-applied herbicides on critical time for weed removal (CTWR) in GR soybean. The studies were laid out in a split-plot arrangement with herbicide regime as the main plot and weed removal timing as the subplot. The herbicide regimes used were either no PRE or premix of either sulfentrazone plus imazethapyr (350 + 70 g ai ha−1) or saflufenacil plus imazethapyr plus pyroxasulfone (26 + 70 + 120 g ai ha−1). The weed removal timings were at V1, V3, V6, R2, and R5 soybean stages, with weed-free and weedy season-long checks. Weeds were removed by application of glyphosate (1,400 g ae ha−1) or by hoeing. The results across all years and locations suggested that the use of PRE herbicides delayed CTWR in soybean. In particular, the CTWR without PRE herbicides was determined to be around the V1 to V2 (14 to 21 d after emergence [DAE]) growth stage, depending on the location and weed pressure. The use of PRE-applied herbicides delayed CTWR from about the V4 (28 DAE) stage up to the R5 (66 DAE) stage. These results suggest that the use of PRE herbicides in GR soybean could delay the need for POST application of glyphosate by 2 to 5 wk, thereby reducing the need for multiple applications of glyphosate during the growing season. Additionally, the use of PRE herbicides could provide additional modes of action needed to manage GR weeds in GR soybean.
The critical timing of weed removal (CTWR) is the point in crop development when weed control must be initiated to prevent crop yield loss due to weed competition. A field study was conducted in 2018 and 2020 near Scottsbluff, NE to determine how the use of preemergence herbicides impacts the CTWR in dry bean. The experiment was arranged as a split-plot, with herbicide treatment and weed removal timing as main and sub plot factors, respectively. Herbicide treatment consisted of no-preemergence, or pendimethalin (1070 g ai ha–1) + dimethenamid-P (790 g ai ha–1) applied preemergence. Sub-plot treatments included season-long weed-free, weed removal at: V1, V3, V6, R2, and R5 dry bean growth stages, and a season-long weedy control. A four-parameter logistic model was used to estimate the impact of time of weed removal, for all response variables including dry bean yield, dry bean plants m–1 row, pods plant–1, seeds pod–1, and seed weight. The CTWR based on 5% yield reduction was estimated to range from the V1 growth stage [(16 d after emergence (DAE)] to the R1 growth stage (39 DAE) in the no-PRE herbicide treatment. In the PRE-applied treatment, the CTWR began at the R2 growth stage (47 DAE). Dry bean plants m–1 row was reduced in the no-preemergence treatment when weed removal was delayed beyond the R2 growth stage in the 2020 field season. The use of preemergence-applied herbicides prevented a reduction in the number of pods plant–1 in 2020, and the number of seeds pod–1 in 2018 and 2020. In 2018, the number of pods plant–1 was reduced by 73% when no-preemergence was applied, compared to 26% in the preemergence-applied treatment. The use of preemergence-applied soil active herbicides in dry bean delayed the CTWR and preserved yield potential.
A prepackaged mixture of desmedipham + phenmedipham was previously labeled for control of Amaranthus spp. in sugarbeet. There are currently no effective POST herbicide options to control glyphosate-resistant Palmer amaranth in sugarbeet. Sugarbeet growers are interested in using desmedipham + phenmedipham to control escaped Palmer amaranth. In 2019, a greenhouse experiment was initiated near Scottsbluff, NE to determine the selectivity of desmedipham and phenmedipham between Palmer amaranth and sugarbeet. Three populations of Palmer amaranth and four sugarbeet hybrids were evaluated. Herbicide treatments consisted of desmedipham and phenmedipham applied singly or as mixtures at an equivalent rate. Herbicides were applied when Palmer amaranth and sugarbeet were at cotyledon stage, or two true leaf sugarbeet stage and when Palmer amaranth was 7 cm tall. The selectivity indices for desmedipham, phenmedipham, and desmedipham + phenmedipham were 1.61, 2.47, and 3.05, respectively, at the cotyledon stage. At the two true leaf application stage, the highest rates of desmedipham and phenmedipham caused low mortality in sugarbeet, resulting in a failed response of mortality. The highest rates of desmedipham + phenmedipham caused a mortality response of sugarbeet and a selectivity index of 2.15. Desmedipham treatments resulted in lower LD50 estimates for Palmer amaranth compared to phenmedipham, indicating that desmedipham can provide greater levels of control for Palmer amaranth. However, desmedipham also caused greater injury in sugarbeet, producing lower LD50 estimates compared to phenmedipham. Desmedipham + phenmedipham provided 90% or greater control of cotyledon size Palmer amaranth at a labeled rate, but also caused high levels of sugarbeet injury. Neither desmedipham, phenmedipham, nor desmedipham + phenmedipham was able to control 7 cm tall Palmer amaranth at previously labeled rates. Results indicate that desmedipham + phenmedipham can only control Palmer amaranth if applied at the cotyledon stage and a high level of sugarbeet injury is acceptable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.