To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER T2 ) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER T2 ) transgene, OHT (4-hydroxytamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells with reporter genes. Three days after recombination, reporter-tagged cells were quiescent astroglial cells that expressed the stem cell marker LeX in the subventricular zone (SVZ) and dentate gyrus (DG). After 2-4 weeks, the tagged GFAP lineage included proliferating progenitors expressing the neuronal marker Dcx (Doublecortin) in the SVZ and the DG. After 4 weeks, the GFAP lineage generated mature neurons in the olfactory bulb (OB), DG, and, strikingly, also in the cerebral cortex. A major portion of all neurons in the DG and OB born at the end of the first postnatal week were generated from GFAP ϩ cells. In addition to neurons, mature oligodendrocytes and astrocytes populating the cerebral cortex and white matter were also the progeny of GFAP ϩ astroglial ancestors. Thus, genetic fate mapping of postnatal GFAP ϩ cells reveals that they seed the postnatal brain with neural progenitors/stem cells that in turn give rise to neural precursors and their mature neuronal and oligodendrocytic progeny in many CNS regions, including the cerebral cortex.
BackgroundGlycerophosphodiester phosphodiesterase 2 (GDE2) is a six-transmembrane protein that cleaves glycosylphosphatidylinositol (GPI) anchors to regulate GPI-anchored protein activity at the cell surface. In the developing spinal cord, GDE2 utilizes its enzymatic function to regulate the production of specific classes of motor neurons and interneurons; however, GDE2’s roles beyond embryonic neurogenesis have yet to be defined.MethodUsing a panel of histological, immunohistochemical, electrophysiological, behavioral, and biochemistry techniques, we characterized the postnatal Gde2 −/− mouse for evidence of degenerative neuropathology. A conditional deletion of Gde2 was used to study the temporal requirements for GDE2 in neuronal survival. Biochemical approaches identified deficits in the processing of GPI-anchored GDE2 substrates in the SOD1 G93A mouse model of familial Amyotrophic Lateral Sclerosis that shows robust motor neuron degeneration.ResultsHere we show that GDE2 expression continues postnatally, and adult mice lacking GDE2 exhibit a slow, progressive neuronal degeneration with pathologies similar to human neurodegenerative disease. Early phenotypes include vacuolization, microgliosis, cytoskeletal accumulation, and lipofuscin deposition followed by astrogliosis and cell death. Remaining motor neurons exhibit peripheral motor unit restructuring causing behavioral motor deficits. Genetic ablation of GDE2 after embryonic neurogenesis is complete still elicits degenerative pathology, signifying that GDE2’s requirement for neuronal survival is distinct from its involvement in neuronal differentiation. Unbiased screens identify impaired processing of Glypican 4 and 6 in Gde2 null animals, and Glypican release is markedly reduced in SOD1 G93A mice.ConclusionsThis study identifies a novel function for GDE2 in neuronal survival and implicates deregulated GPI-anchored protein activity in pathways mediating neurodegeneration. These findings provide new molecular insight for neuropathologies found in multiple disease settings, and raise the possibility of GDE2 hypofunctionality as a component of neurodegenerative disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-017-0148-1) contains supplementary material, which is available to authorized users.
Highlights d GDE2 is expressed in neurons and a subset of oligodendrocytes d Loss of neuronal GDE2 delays oligodendrocyte maturation and impairs myelination d GDE2 stimulates canonical Wnt signaling in neurons, which releases phosphacan d Neuronally derived phosphacan promotes oligodendrocyte maturation
Oligodendrocyte development is tightly controlled by extrinsic signals; however, mechanisms that modulate cellular responses to these factors remain unclear. Six-transmembrane glycerophosphodiester phosphodiesterases (GDEs) are emerging as central regulators of cellular differentiation via their ability to shed glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface. We show here that GDE3 controls the pace of oligodendrocyte generation by negatively regulating oligodendrocyte precursor cell (OPC) proliferation. GDE3 inhibits OPC proliferation by stimulating ciliary neurotrophic factor (CNTF)-mediated signaling through release of CNTFRα, the ligand-binding component of the CNTF-receptor multiprotein complex, which can function as a soluble factor to activate CNTF signaling. GDE3 releases soluble CNTFRα by GPI-anchor cleavage from the plasma membrane and from extracellular vesicles (EVs) after co-recruitment of CNTFRα in EVs. These studies uncover new physiological roles for GDE3 in gliogenesis and identify GDE3 as a key regulator of CNTF-dependent regulation of OPC proliferation through release of CNTFRα.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.