Lack of stringent policies requiring water treatment facilities to combat occurrence of residual antibiotics in effluents critically impairs the resiliency of low-income communities to drug-resistant pathogens. In an attempt to mitigate the effects of residual drugs in aqueous media, we investigate the extent to which rice husk ash (RHA) functionalized by Moringaoleifera protein (MOP) sequestrates amoxicillin in solution. A semi-factorial design was implemented to evaluate the influence of initial amoxicillin concentration, initial MOP functionalized RHA dosage, and contact time on the removal on amoxicillin in water. Results of our experiments have shown that MOP functionalization enhanced RHA by doubling its rate to sequestrate amoxicillin molecules in solution. This strongly indicated that MOP adhered on the surface of RHA significantly improved its capacity to remove amoxicillin contamination in aqueous solution. Statistical analysis employed further supported our results by implying a significant difference between the performance of MOP-functionalized and bare RHA. In conclusion, our results strongly suggest that MOP functionalization can be a potential practical solution to alleviate the vulnerability of communities to emerging antibiotic pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.