Declining water availability in the American Southwest continues to generate interest in efficient subsurface drip irrigation (SDI) for cotton (Gossypium hirsutum L.) production. Fertigating urea ammonium nitrate (UAN) at low rates with high frequency is an important advantage of SDI. However, N fertilizer management guidelines specific to SDI cotton are lacking. A 3‐yr study was conducted on a Casa Grande sandy loam soil in Maricopa, AZ, to test a pre‐plant soil profile NO3 test algorithm and a canopy reflectance approach to manage in‐season N fertilizer for SDI cotton. Treatments included soil test‐based N management, reflectance‐based N management, and zero‐N at 100% evapotranspiration irrigation replacement. A second irrigation level of 70% evapotranspiration replacement included just the soil test‐based N and zero‐N treatments. The five treatments were replicated three times. Soil test–based N treatments received from 172 to 224 kg N ha−1, and reflectance‐based N amounts were 112 to 158 kg N ha−1. Nitrogen recovery efficiency (RE) of UAN‐N was high, with 24 fertigations during 6 wk between first square and mid bloom ranging from 58 to 93%. The isotope dilution method estimated similar RE in 2017. Residual post‐harvest soil NO3–N was notable only with 70% irrigation. Lint and seed yields were significantly reduced with the 70% irrigation treatment compared with 100% irrigation. The key result of this study is that reflectance‐based N management saved 17 to 112 kg N ha−1 without reducing lint yields compared with the soil test–based N treatment.
With rising demands on water supplies necessitating water reuse, wastewater treatment plant (WWTP) effluent is often used to irrigate agricultural lands. Emerging contaminants, like pharmaceuticals and personal care products (PPCPs), are frequently found in effluent due to limited removal during WWTP processes. Concern has arisen about the environmental fate of PPCPs, especially regarding plant uptake. The aim of this study was to analyze uptake of sulfamethoxazole, trimethoprim, ofloxacin, and carbamazepine in wheat (Triticum aestivum L.) plants that were spray-irrigated with WWTP effluent. Wheat was collected before and during harvest, and plants were divided into grain and straw. Subsamples were rinsed with methanol to remove compounds adhering to surfaces. All plant tissues underwent liquid-solid extraction, solid-phase extraction cleanup, and liquid chromatography-tandem mass spectrometry analysis. Residues of each compound were present on most plant surfaces. Ofloxacin was found throughout the plant, with higher concentrations in the straw (10.2 ± 7.05 ng g ). Trimethoprim was found only on grain or straw surfaces, whereas carbamazepine and sulfamethoxazole were concentrated within the grain (1.88 ± 2.11 and 0.64 ± 0.37 ng g −1 , respectively). These findings demonstrate that PPCPs can be taken up into wheat plants and adhere to plant surfaces when WWTP effluent is spray-irrigated. The presence of PPCPs within and on the surfaces of plants used as food sources raises the question of potential health risks for humans and animals.
Th anti-seizure medication carbamazepine is often found in treated sewage effluent and environmental samples. Carbamazepine has been shown to be very persistent in sewage treatment, as well as ground water. Due to environmental persistence, irrigation with sewage effluent could result in carbamazepine contamination of surface and ground water. To determine the potential for leaching of carbamazepine, a series of adsorption and desorption batch equilibrium experiments were conducted on irrigated soils. It was found that carbamazepine adsorption to biosolid-amended (T) soils had a KD of 19.8 vs. 12.6 for unamended soil. Based on adsorption, carbamazepine leaching potential would be categorized as low. During desorption significant hysteresis was observed and KD increased for both soils. Desorption isotherms also indicate a potential for irreversibly bound carbamazepine in the T soil. Results indicate that initial removal of carbamazepine via adsorption from irrigation water is significant and that desorption characteristics would further limit the mobility of carbamazepine through the soil profile indicating that carbamazepine found in sewage effluent used for irrigation has a low leaching potential.
Septic systems may contribute micropollutants to shallow groundwater and surface water. We constructed two in situ conventional drainfields (drip dispersal and gravel trench) and an advanced drainfield of septic systems to investigate the fate and transport of micropollutants to shallow groundwater. Unsaturated soil-water and groundwater samples were collected, over 32 sampling events (January 2013 to June 2014), from the drainfields (0.31-1.07 m deep) and piezometers (3.1-3.4 m deep). In addition to soil-water and groundwater, effluent samples collected from the septic tank were also analyzed for 20 selected micropollutants, including wastewater markers, hormones, pharmaceuticals and personal care products (PPCPs), a plasticizer, and their transformation products. The removal efficiencies of micropollutants from septic tank effluent to groundwater were similar among three septic systems and were 51-89% for sucralose and 53->99% for other micropollutants. Even with high removal rates within the drainfields, six PPCPs and sucralose with concentrations ranging from <0.3 to 154 ng/L and 121 to 32,000 ng/L reached shallow groundwater, respectively. The human health risk assessment showed that the risk to human health due to consumption of groundwater is negligible for the micropollutants monitored in the study. A better understanding of ecotoxicological effects of micropollutant mixtures from septic systems to ecosystem and human health is warranted for the long-term sustainability of septic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.