The link between Rossby wave breaking (RWB) and the four wintertime weather regimes over the North Atlantic domain is studied in this paper. Using the 40-yr ECMWF Re-Analysis (ERA-40) data, frequencies of occurrence of anticyclonic and cyclonic wave-breaking (AWB and CWB, respectively) events are computed. Each weather regime has its own characteristic pattern of RWB frequencies. CWB events are found to be most frequent for the Greenland anticyclone weather regime whereas AWB events occur more for the Atlantic ridge and the zonal regimes. Time-lagged composites show that the RWB events characterizing each weather regime occur more often during the formation of the regime rather than during its decay. This suggests a reinforcement of the weather regime by RWB. An exception is the blocking weather regime, which is destroyed by an increase of CWB events south of Greenland.Weather regime transitions are then studied using the low-frequency streamfunction tendency budget. Two types of precursors for the transitions have been identified. One is related to linear propagation of lowfrequency transient eddies and the other to nonlinear interactions among the low-and high-frequency transient eddies. The latter has been related to the anomalous frequencies of occurrence of RWB. Two transitions are more precisely analyzed. The transition from blocking to Greenland anticyclone is triggered by a decrease of AWB events over Europe as well as a strong CWB event south of Greenland. The zonal to blocking transition presents evidence of two distinct precursors: one is a low-frequency wave train coming from the subtropical western Atlantic and the other, which occurs later, is characterized by a decrease of AWB and CWB events over western Europe that cannot continue to maintain the westerlies in that region.
The synoptic and subsynoptic environments associated with polar low genesis are examined. Ambient pre–polar low environments are classified as forward or reverse shear conditions based on the angle between the thermal and mean wind. Forward shear environments are associated with a synoptic-scale ridge over Scandinavia, featuring a zonally oriented baroclinic zone extending throughout the troposphere with a wind speed maximum at the tropopause. Similar to typical midlatitude cyclogenesis, concurrent wavelike development occurs both in the lower and upper troposphere along the baroclinic zone and the mean propagation direction is eastward, parallel to isolines of sea surface temperature. Reverse shear environments exhibit a distinctly different structure and are characterized by a trough over Scandinavia, associated with a synoptic-scale, occluded cyclone. The genesis area exhibits strong cold air advection on its right-hand side and polar low development occurs on the warm side of an intense low-level jet. The environment resembles the characteristics conducive to secondary development associated with frontal instability. Polar lows developing in this configuration propagate mainly southward, perpendicular to isolines of sea surface temperature. The two genesis environments exhibit similar temperature differences between the sea surface and atmosphere near the surface, yet the magnitude of the surface fluxes is approximately double during reverse shear conditions due to stronger low-level winds. The ratio between surface sensible and latent heat fluxes is close to unity for both shear environments.
Polar mesoscale cyclones (PMCs) are automatically detected and tracked over the Nordic seas using the Melbourne University algorithm applied to ERA-Interim. The novelty of this study lies in the length of the dataset (1979–2014), using PMC tracks to infer relationships to large-scale flow patterns, and elucidating the sensitivity to different selection criteria when defining PMCs and polar lows and their genesis environments. The angle between the ambient mean and thermal wind is used to distinguish two different PMC genesis environments. The forward shear environment (thermal and mean wind have the same direction) features typical baroclinic conditions with a temperature gradient at the surface and a strong jet stream at the tropopause. The reverse shear environment (thermal and mean wind have opposite directions) features an occluded cyclone with a barotropic structure throughout the entire troposphere and a low-level jet. In contrast to previous studies, PMC occurrence features neither a significant trend nor a significant link with the North Atlantic Oscillation and the Scandinavian blocking (SB), though the SB negative pattern seems to promote reverse shear PMC genesis. The sea ice extent in the Nordic seas is not associated with overall changes in PMC occurrence but influences the genesis location. Selected cold air outbreak indices and the temperature difference between the sea surface and 500 hPa (SST − T500) show no robust link with PMC occurrence, but the characteristics of forward shear PMCs and their synoptic environments are sensitive to the choice of the SST − T500 threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.