The sensitivity of the stability of the ideal n = 1 internal kink mode is analysed both analytically and numerically in rotating tokamak plasmas. These stability analyses have been carried out including the centrifugal effects of toroidal plasma rotation upon the equilibrium, and also inconsistently when the equilibrium is treated as static. The plasma stability is partially (consistent equilibrium) or wholly (inconsistent treatment) determined by the radial profiles of the plasma density and rotation velocity. It is found that the internal kink mode stability is strongly influenced by small variations in these plasma profiles. Indeed, modest perturbations to the profiles inside the q = 1 surface of only a few percent can result in a stabilising effect upon the kink mode with respect to the static mode growth rate becoming a destabilising effect at the same rotation amplitude, or vice versa. The implications of this extreme sensitivity are discussed, with particular reference to experimental data from MAST.
A factor of 4 dimensionless collisionality scan of H-mode plasmas in MAST shows that the thermal energy confinement time scales as
. Local heat transport is dominated by electrons and is consistent with the global scaling. The neutron rate is in good agreement with the ν* dependence of τE,th. The gyrokinetic code GYRO indicates that micro-tearing turbulence might explain such a trend. A factor of 1.4 dimensionless safety factor scan shows that the energy confinement time scales as
. These two scalings are consistent with the dependence of energy confinement time on plasma current and magnetic field. Weaker qeng and stronger ν* dependences compared with the IPB98y2 scaling could be favourable for an ST-CTF device, in that it would allow operation at lower plasma current.
Edge cooling experiments with a tracer-encapsulated solid pellet in the Large Helical Device (LHD) show a significant rise of core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport is dominated. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay of the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase in collisionality in the core plasma and the decrease in electron temperature gradient scale length in the outer region of the plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.