A self-consistent kinetic model is developed to study the stability of the resistive wall mode in toroidal plasmas. This model is compared with other models based on perturbative approaches. The degree of the kinetic modification to the stability of the mode depends on the plasma configurations. Both stabilizing and destabilizing kinetic effects are observed. The nonperturbative approach, with a self-consistent inclusion of the eigenfunctions and the eigenvalues of the resistive wall mode, normally finds less stabilization than the perturbative approach.
New experiments in 2013-2014 have investigated the physics responsible for the decrease in H-mode pedestal confinement observed in the initial phase of JET-ILW operation (2012 Experimental Campaigns). The effects of plasma triangularity, global beta and neutrals-both D and low-Z impurities-on pedestal confinement and stability have been investigated systematically. The stability of JET-ILW pedestals is analysed in the framework of the Peeling-Ballooning model and the pedestal predictive code EPED. Low D neutrals content in the plasma, achieved either by low D 2 gas injection rates or by divertor configurations with optimum pumping, and high beta are necessary conditions for good pedestal (and core) performance. In such conditions the pedestal stability is consistent with the Peeling-Ballooning paradigm. Moderate to high D 2 gas rates, required for W control and stable H-mode operation with the ILW, lead to increased D neutrals content in the plasma and additional physics in the pedestal models may be required to explain the onset of the ELM instability. The physics mechanism leading to the beneficial increase in pedestal temperature with N 2 seeding in high triangularity JET-ILW H-modes is not yet understood. The changes in H-mode performance associated with the change in JET wall composition from C to Be/W point to D neutrals and low-Z impurities playing a role in pedestal stability, elements which are not currently included in pedestal models. These aspects need to be addressed in order to progress towards full predictive capability of the pedestal height.
The sensitivity of the stability of the ideal n = 1 internal kink mode is analysed both analytically and numerically in rotating tokamak plasmas. These stability analyses have been carried out including the centrifugal effects of toroidal plasma rotation upon the equilibrium, and also inconsistently when the equilibrium is treated as static. The plasma stability is partially (consistent equilibrium) or wholly (inconsistent treatment) determined by the radial profiles of the plasma density and rotation velocity. It is found that the internal kink mode stability is strongly influenced by small variations in these plasma profiles. Indeed, modest perturbations to the profiles inside the q = 1 surface of only a few percent can result in a stabilising effect upon the kink mode with respect to the static mode growth rate becoming a destabilising effect at the same rotation amplitude, or vice versa. The implications of this extreme sensitivity are discussed, with particular reference to experimental data from MAST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.