In this study a number of composite-like samples of γ-cyclodextrin and HiPco carbon nanotubes were prepared. The first sample was prepared by a simple grinding procedure, which has been reported to cut HiPco carbon nanotubes. The other samples were obtained via a refluxing procedure analogous to similar studies on other fullerenes and γ-cyclodextrin. The samples were analyzed using absorption and Raman spectroscopy, and differential scanning calorimetry. The results presented show clear evidence of an intermolecular interaction between γ-cyclodextrin and single-walled carbon nanotubes.
The production of small diameter (0.7-1.2nm) and high purity single walled carbon nanotubes using a gas-phase catalytic approach has aroused considerable interest in the chemistry of this unique material. Most recently it has been proposed that tubes produced in this manner can be cut by simply grinding them in a soft organic material such as γ-cyclodextrin. The results reported on such cutting techniques however concentrated upon microscopy thereby limiting the degree of information, which could be deduced about the type of interaction between the two materials. In this study electronic and vibrational spectroscopy as well as Differential Scanning Calorimetry has been performed upon a ground mixture of the aforementioned single walled carbon nanotubes and γ-Cyclodextrin. The mixture was prepared by grinding in a 30:1 ratio γ -cyclodextrin and single walled carbon nanotubes for approximately two hours with the dropwise addition of ethanol (1ml) in the first 10 minutes. A similar ground mixture of γ-Cyclodextrin and multi walled carbon nanotubes was also prepared to help asses the type and degree of interaction between the single walled carbon nanotubes and the γ-Cyclodextrin. Absorption spectroscopy showed changes to the electronic structure of both the single walled carbon nanotubes and the γ-Cyclodextrin, while evidence from Raman spectroscopy indicates that the cyclodextrins are absorbed via van der Waals forces along the length of the tube inducing a compressive strain. No such evidence for an interaction with multi walled carbon nanotubes was observed suggesting the possibility of a diameter selective interaction. Finally as a comparison a sample containing 5mg of tubes was refluxed in an aqueous solution of γ cyclodextrin (0.3M) for ~72 hour similar to early studies preformed on C 60 and γ cyclodextrin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.