In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.
Seismic performance evaluation in structural design requires the use of sophisticated numerical models. In particular, to accurately represent the non‐linear behaviour of reinforced concrete (RC) structures when subjected to dynamic loadings, the energy dissipation mechanisms must be accurately represented. However, the classical viscous damping models, which are still widely used, are not based on physical considerations at the material level and the choice of damping parameters is often arbitrary. This paper, thus, proposes a time‐domain damping identification method based on equivalent single‐degree‐of‐freedom (SDOF) systems. The methodology is developed using either an updated linear model or a non‐linear energy‐dissipating constitutive model. Energy dissipative phenomena are cracking, friction and unilateral effects upon crack closure. Both models allow the identification of different damping transient variations: (i) With the updated linear model, intrinsic damping ratios and frequencies are identified to define a simple generic damping model, and (ii) with the non‐linear constitutive model, the identified viscous damping ratios represent the dissipative phenomena not described by the material model. The aim is to propose simple models that can be used by anyone to complement their own models. Applying the method to experimental data allows evaluating effective damping ratio transient variations as functions of variables representative of non‐linear behaviour. It is shown that it is possible to accurately model the energy dissipation that is missing in the non‐linear dynamic constitutive models through effective viscous damping models based on dissipative phenomena internal variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.