Lignin-carbohydrate complexes (LCCs) are believed to influence the recalcitrance of lignocellulosic plant material preventing optimal utilization of biomass in e.g. forestry, feed and biofuel applications. The recently emerged carbohydrate esterase (CE) 15 family of glucuronoyl esterases (GEs) has been proposed to degrade ester LCC bonds between glucuronic acids in xylans and lignin alcohols thereby potentially improving delignification of lignocellulosic biomass when applied in conjunction with other cellulases, hemicellulases and oxidoreductases. Herein, we report the synthesis of four new GE model substrates comprising α- and ɣ-arylalkyl esters representative of the lignin part of naturally occurring ester LCCs as well as the cloning and purification of a novel GE from Cerrena unicolor (CuGE). Together with a known GE from Schizophyllum commune (ScGE), CuGE was biochemically characterized by means of Michaelis-Menten kinetics with respect to substrate specificity using the synthesized compounds. For both enzymes, a strong preference for 4-O-methyl glucuronoyl esters rather than unsubstituted glucuronoyl esters was observed. Moreover, we found that α-arylalkyl esters of methyl α-D-glucuronic acid are more easily cleaved by GEs than their corresponding ɣ-arylalkyl esters. Furthermore, our results suggest a preference of CuGE for glucuronoyl esters of bulky alcohols supporting the suggested biological action of GEs on LCCs. The synthesis of relevant GE model substrates presented here may provide a valuable tool for the screening, selection and development of industrially relevant GEs for delignification of biomass.
Classic antibody functions include opsonization, complement activation, and enhancement of cellular antimicrobial function. Antibodies can also have catalytic activity, although the contribution of catalysis to their biological functions has been more difficult to establish. With the ubiquity of catalytic antibodies against glycans virtually unknown, we sought to advance this knowledge. The use of a glycan microarray allowed epitope mapping of several monoclonal antibodies (mAbs) against the capsule of Cryptococcus neoformans. From this, we designed and synthesized two glycan-based FRET probes, which we used to discover antibodies with innate glycosidase activity and analyze their enzyme kinetics, including mAb 2H1, the most efficient identified to date. The validity of the FRET assay was confirmed by demonstrating that the mAbs mediate glycosidase activity on intact cryptococcal capsules, as observed by a reduction in capsule diameter. Furthermore, the mAb 18B7, a glycosidase hydrolase, resulted in the appearance of reducing ends in the capsule as labeled by a hydroxylamine-armed fluorescent (HAAF) probe. Finally, we demonstrate that exposing C. neoformans cells to catalytic antibodies results in changes in complement deposition and increased phagocytosis by macrophages, suggesting that the antiphagocytic properties of the capsule have been impaired. Our results raise questions over the ubiquity of antibodies with catalytic activity against glycans and establish the utility of glycan-based FRET and HAAF probes as tools for investigating this activity.
<p>Classical antibody functions include opsonization, complement activation, and enhancement of cellular antimicrobial function. Antibodies can also have catalytic activity, although the contribution of catalysis to their biological functions has been more difficult to establish. With the ubiquity of catalytic antibodies against glycans virtually unknown, we sought to advance this knowledge. The use of a glycan microarray allowed epitope mapping of several monoclonal antibodies (mAbs) against the capsule of <i>Cryptococcus neoformans</i>. From this, we designed and synthesized two glycan based Förster Resonance Energy Transfer (FRET) probes, which we used to discover antibodies with innate glycosidase activity and analyse their enzyme kinetics, including mAb 2H1, a polysaccharide lyase, and the most efficient glycosidase to date. The validity of the FRET assay was confirmed by demonstrating that the mAbs mediate glycosidase activity on intact cryptococcal capsules, as observed by a reduction in capsule diameter. Further the mAb 18B7, a glycosidase hydrolase, resulted in the appearance of reducing ends in the capsule as labelled by hydroxylamine-armed fluorescent (HAAF) probe. Finally, we demonstrate that exposing <i>C. neoformans </i>cells to catalytic antibodies results in changes in complement deposition and increased phagocytosis by macrophages — suggesting the anti-phagocytic properties of the capsule have been impaired. Our results raise questions over the ubiquity of antibodies with catalytic activity against glycans and establish the utility of glycan-based FRET and HAAF probes as tools for investigating this activity.</p>
Catalytic monoclonal antibodies (mAbs) against the capsule of <i>Cryptococcus neoformans</i> have been identified but characterization of their Michaelis-Menten kinetics against oligosaccharides has so far not been possible. To address this, we report the design and synthesis of two glycan based Förster resonance energy transfer (FRET) probes that express a major structural unit of the cryptococcal polysaccharide. These probes allowed the kinetic analysis of four catalytic antibodies with glycosidase activity, including 2H1, an antibody which was not known previously to be catalytic. This is only the second report of an antibody with naturally occurring catalytic activity against glycans and the most efficient identified to date. The probe’s capability as a diagnostic for catalysis was demonstrated by accurately predicting glycosidase activity on the native capsule. Furthermore, we used molecular docking studies to reveal the antibody-glycan interactions, with the first structural insights into these interactions between anti-GXM mAbs and their epitopes. Through modelling we see no classical catalytic residues in the antigen binding site, signifying the possibility of further glycan hydrolyzing mechanisms yet to be discovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.