We report on the three-dimensional electron momentum densities (EMD) of graphite and fullerene obtained by a so-called (,e) experiment, i.e. the coincident detection of an inelastically scattered hard x-ray photon with its recoil electron. A monochromatized flux of 1012 photons s-1 at 150 keV from the high-energy x-ray wiggler beamline of the ESRF was directed onto thin graphite or fullerene targets. Comparison with a pseudopotential and a full-potential linear muffin-tin orbital calculation in the case of graphite is made. Inclusion of electron correlation via the Lam-Platzman correction is discussed. The experimental EMD of C60 shows stronger electron delocalization in the `buckyball' compared to graphite, which is supported by theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.