Ziel: Evaluation der Durchführbarkeit und Effizienz der Kombination aus C-Arm Flachdetektor-CT (FD-CT) und elektromagnetischer Navigation (EMN) bei der Steuerung perkutaner Nadelbiopsien.
Abstract
!Purpose: To evaluate the feasibility and efficacy of C-arm fluoroscopic cone-beam computed tomography (CACT) in combination with a new electromagnetic tracking (EMT) system for needle guidance during percutaneous biopsies. Materials and Methods: 53 patients were referred for biopsy of thoracic (n = 19) and abdominal (n = 34) lesions. CT-like images of the anatomical region of interest (ROI) were generated using a flat panel-based angiographic system. These images were transmitted to an EMT system. A coaxial puncture needle with a sensor in its tip was connected with the navigation system and tracked into an electromagnetic field created via a field generator. Data generated within this field were merged with the CACT images. On a monitor both the anatomical ROI and needle tip position were displayed to enable precise needle insertion into the target. Through the coaxial needle, biopsy specimens for the histologic evaluation were extracted. Number of representative biopsy samples, number of core biopsies/patient, total procedure time, dose-area product, fluoroscopic time, and complications were recorded. Results: 53 CACT/EMT-guided biopsy procedures were performed, 48 of which (91 %) yielded representative tissue samples. Four core biopsies were obtained from each patient. 40 (75 %) lesions were malignant and 13 (25 %) lesions were benign. The total procedure time was 9 ± 5 min (range, 3 -23 min), fluoroscopic time was 0.8 ± 0.4 min (range, 0.4 -2 min). The mean dosearea product (cGy cm²) was 7373 (range, 895 -26 904). The rate of complications (1 pneumothorax, 2 hemoptyses) was 6 %. Conclusion: CACT combined with EMT appears to be a feasible and effective technique for the guidance of percutaneous biopsies with a low rate of therapeutically relevant complications.This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.