Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the COVID-19 pandemic. The viral protein of SARS-CoV-2, spike protein (SP), mediates entry into host cells, contributing to pathogenesis of COVID-19. Prostate cancer is the most common cancer among men in the United States. Inducible T-cell costimulator ligand (ICOSL) and intercellular cell adhesion molecule 2 (ICAM-2) are expressed in cancer cells and their roles in cancer growth remain controversial. It is unknown if SP can affect the expression of ICAM-2 or ICOSL in prostate cancer. This study investigated the effects of SARS-CoV-2 SP on the expression of ICAM-2 and ICOSL and the time-dependent effect of SP on growth and survival of prostate cancer cells. Methods: The effect of SARS-CoV-2 SP on the survival of a widely-used prostate cancer cell line, LNCaP, was assessed using clonogenic cell survival assay and quick cell proliferation assay. Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were performed to investigate the expression of ICAM-2 and ICOSL. The survival of an additional prostate cancer cell line, PC-3, was also evaluated by clonogenic survival assay. Results: After 3 days, a significant decrease in the percentage of colonies in LNCaP cells treated with SP was found, which was paralleled by a decrease in optical density (OD) value in LNCaP cells in the presence of SP. A significant decrease in the percentage of colonies treated with SP was also found in PC-3 cells evaluated by clonogenic survival assay. In addition, the mRNA expression of ICAM-2 was lower, whereas the mRNA expression of ICOSL was higher in SP-treated LNCaP cells. This was supported by protein expressions for ICAM-2 and ICOSL evaluated with IHC. Conclusions: In LNCaP cells, SARS-CoV-2 SP downregulates the expression of ICAM-2 but upregulates the expression of ICOSL. SARS-CoV-2 SP inhibits growth of prostate cancer cells in a time-dependent manner. Further studies are needed to fully address the roles of ICAM-2 and ICOSL in the inhibition prostate cancer growth by SARS-CoV-2 SP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.