"Capsule": Urban environmental geochemistry as a scientific discipline provides valuable information on trace metal contamination of the urban environment and its associated health effects. AbstractAs the world's urban population continues to grow, it becomes increasingly imperative to understand the dynamic interactions between human activities and the urban environment. The development of urban environmental geochemistry has yielded a significant volume of scientific information about geochemical phenomena found uniquely in the urban environment, such as the distribution, dispersion, and geochemical characteristics of some toxic and potentially toxic trace metals. The aim of this paper is to provide an overview of the development of urban environmental geochemistry as a field of scientific study and highlight major transitions during the course of its development from its establishment to the major scientific interests in the field today. An extensive literature review is also conducted of trace metal contamination of the urban terrestrial environment, in particular of urban soils, in which the uniqueness of the urban environment and its influences Corresponding author (X. D. Li): E-mail address: cexdli@polyu.edu.hk. Tel.: +852-2766-6041; Fax: +852-2334-6389. This is the Pre-Published Version.2 on trace metal contamination are elaborated. Last, potential areas of future development in urban environmental geochemistry are identified and discussed.
-Rapid urban and industrial development in China in the last few decades has provoked some serious environmental concerns. As one of the regions with the fastest economic development in China, the Pearl River Delta (PRD) is particularly susceptible to environmental degradation. Atmospheric emissions represent a major pathway of anthropogenic inputs of heavy metals into the surface environment. Samples of atmospheric deposits were collected at urban, suburban and rural locations in the PRD (including Hong Kong) using bulk deposition samplers in the summer and winter seasons of [2001][2002]. The samples were analyzed for heavy metal concentrations and Pb isotopic compositions. According to the analytical results, atmospheric deposition of Cr, Cu, Pb and Zn in the PRD (6.43 ± 3.19, 18.6 ± 7.88, 12.7 ± 6.72 and 104 ± 36.4 mg/m 2 /yr, respectively) was significantly elevated compared with other regions, e.g. the Great Lakes region in North America and the North Sea in Europe. It was also found that atmospheric deposition of Cu, Cr and Zn was generally higher in the summer than that in the winter, which could be caused by the washout effect of the rainy season in the subtropical region. Pb ratios of some atmospheric deposits in the summer season suggested that atmospheric Pb at some locations of the PRD could be attributed to other anthropogenic source(s).
Ever-increasing heavy metal accumulation in the urban environment of Guangzhou, the largest light industrial production base and one of the most rapidly developing cities in China, poses a serious threat to environment as well as to human health in the region. As a sink or source, urban deposits are good indicators of the level and extent of heavy metal accumulation in the surface environment. The aim of this preliminary study was to examine the distribution of heavy metal contamination in the urban environment of Guangzhou. It was based on a systematic sampling of road dusts and corresponding gully sediments along major roads running mainly through commercial and residential to industrial districts of the city. In addition to road dusts and gully sediments, ceiling dusts from the Pearl River Tunnel were also collected to characterize anthropogenic emissions dominated by traffic-related activities. In general, the level of Cd, Cu, Pb and Zn contaminations were more severe on the industrialized side of Guangzhou than on the western side where heavy traffic and industrial activities were limited. The primary determinants of the level of heavy metal contamination and the distribution of this contamination in the urban environment of Guangzhou were the site-specific conditions of its urban setting, particularly the types of industries, the nature of the traffic flow, sample residence times and variations in grain size of the particulate contaminants. This study highlights the complexity of the urban system and indicates that in just such a system individual urban components should be interlinked to assess the long-term environmental and health effects of heavy metal contamination. Among the heavy metals tested--Cd, Cu, Pb and Zn--the level of Zn contamination was the most severe and widespread, and thus requires immediate attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.