The annotation of the mammalian protein coding genome is incomplete. Arbitrary open reading frame (ORF) size restriction and the absolute requirement for a methionine codon as the sole initiator of translation, have constrained identification of potentially important transcripts with non-canonical protein coding potential1,2. Using unbiased transcriptomic approaches in macrophages responding to bacterial infection, we show widespread ribosome association with a large number of RNAs that were previously annotated as “non-protein coding”. Although the ability of such non-canonical ORFs to encode functional protein is controversial3,4, we identify a plethora of novel short and non-ATG initiated ORFs with the ability to generate stable and spatially distinct proteins. Importantly, we show that the translation of a novel ORF ‘hidden’ within the long non-coding RNA Aw112010 is essential for the orchestration of mucosal immunity during both bacterial infection and colitis. Together this work expands our interpretation of the protein coding genome and demonstrates the critical nature of proteinaceous products generated from non-canonical ORFs to the immune response in vivo. We therefore propose that the misannotation of non-canonical ORF-containing genes as non-coding RNAs may obscure the essential role of a multitude of previously undiscovered protein coding genes in immunity and disease.
Highlights d Epithelial and immune cell IL-18 are not required to combat S. typhimurium d Enteric neurons express IL-18 d Enteric neuronal IL-18 controls goblet cell antimicrobial protein expression d Neuronal IL-18 directs killing of enteric bacterial pathogens
The Gram-negative bacterium Campylobacter jejuni is a major cause of foodborne disease in humans. After infection, C. jejuni rapidly colonizes the mucus layer of the small and large intestine and induces a potent pro-inflammatory response characterized by the production of a large repertoire of cytokines, chemokines, and innate effector molecules, resulting in (bloody) diarrhea. The virulence mechanisms by which C. jejuni causes this intestinal response are still largely unknown. Here we show that C. jejuni releases a potent pro-inflammatory compound into its environment, which activates an NF-κB-mediated pro-inflammatory response including the induction of CXCL8, CXCL2, TNFAIP2 and PTGS2. This response was dependent on a functional ALPK1 receptor and independent of Toll-like Receptor and Nod-like Receptor signaling. Chemical characterization, inactivation of the heptose-biosynthesis pathway by the deletion of the hldE gene and in vitro engineering identified the released factor as the LOS-intermediate ADP-heptose and/or related heptose phosphates. During C. jejuni infection of intestinal cells, the ALPK1-NF-κB axis was potently activated by released heptose metabolites without the need for a type III or type IV injection machinery. Our results classify ADP-heptose and/or related heptose phosphates as a major virulence factor of C. jejuni that may play an important role during Campylobacter infection in humans.
The impact of bacterial members of the microbiota on the development of colorectal cancer (CRC) has become clear in recent years. However, exactly how bacteria contribute to the development of cancer is often still up for debate. The impact of bacteria-derived metabolites, which can influence the development of CRC either in a promoting or inhibiting manner, is undeniable. Here, we discuss the effects of the most well-studied bacteria-derived metabolites associated with CRC, including secondary bile acids, short-chain fatty acids, trimethylamine-N-oxide and indoles. We show that the effects of individual metabolites on CRC development are often nuanced and dose- and location-dependent. In the coming years, the array of metabolites involved in CRC development will undoubtedly increase further, which will emphasize the need to focus on causation and mechanisms and the clearly defined roles of bacterial species within the microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.