Premise Geophytes—plants that typically possess a bulb, corm, tuber, and/or rhizome—have long captured the attention of hobbyists and researchers. However, despite the economic and evolutionary importance of these traits, the potential drivers of their morphological diversity remain unknown. Using a comprehensive phylogeny of monocots, we test for correlations between climate and geophyte growth form to better understand why we observe such a diversity of underground traits in geophytes. Understanding the evolutionary factors promoting independent origins of these potentially adaptive organs will lend insights into how plants adapt to environmental hardships. Methods Using a comprehensive phylogeny incorporated with global occurrence and climate data for the monocots, we investigated whether climatic patterns could explain differences between geophytes and non‐geophytes, as well as differences among bulbous, cormous, tuberous, rhizomatous, and non‐geophytic taxa. We used phylogenetically‐informed ANOVAs, MANOVAs, and PCAs to test differences in climatic variables between the different growth forms. Results Geophytes inhabit cooler, drier, and more thermally variable climates compared to non‐geophytes. Although some underground traits (i.e., bulb, corm, and tuber) appear to inhabit particular niches, a result supported by strong phylogenetic signal, our data has limited evidence for an overall role of climate in the evolution of these traits. However, temperature may be a driving force in rhizome evolution, as well as the evolution of taxa which we considered here as non‐geophytic (e.g., trees, epiphytes, etc.). Conclusions While precipitation patterns have played a role in the evolution of geophytism, our results suggest that temperature should be more strongly considered as a contributing factor promoting the evolution of belowground bud placement, specifically in rhizomatous and non‐geophytic taxa. Bulbous, cormous, and tuberous taxa need closer examination of other mechanisms, such as anatomical constraints or genetic controls, in order to begin to understand the causes behind the evolution of their underground morphology.
Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (<2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage. K E Y W O R D S : Autotomy, evolutionary ecology, evolutionary origins, latitudinal gradient, phylogenetic comparative methods, predator-prey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.