The transcription factor nuclear factor erythroid-2 (NF-E2)-related factor 2 (NRF2) is a central regulator of redox, metabolic, and protein homeostasis that intersects with many other signaling cascades. While the understanding of the complex nature of NRF2 signaling continues to grow, there is only one therapeutic targeting NRF2 for clinical use, dimethyl fumarate, used for the treatment of multiple sclerosis. The discovery of new therapies is confounded by the fact that NRF2 levels vary significantly depending on physiological and pathological context. Thus, properly timed and targeted manipulation of the NRF2 pathway is critical in creating effective therapeutic regimens. In this review, we summarize the regulation and downstream targets of NRF2. Furthermore, we discuss the role of NRF2 in cancer, neurodegeneration, and diabetes, as well as cardiovascular, kidney, and liver disease, with a special emphasis on NRF2-based therapeutics, including those that have made it into clinical trials.
NRF2, a transcription factor that has been deemed the master regulator of cellular redox homeostasis, declines with age. NRF2 transcriptionally upregulates genes that combat oxidative stress; therefore, loss of NRF2 allows oxidative stress to go unmitigated and drive the aging phenotype. Oxidative stress is a common theme among the key features associated with the aging process, collectively referred to as the "Hallmarks of Aging", as it disrupts proteostasis, alters genomic stability, and leads to cell death. In this review, we outline the role that oxidative stress and the reduction of NRF2 play in each of the Hallmarks of Aging, including how they contribute to the onset of neurodegenerative disorders, cancer, and other age-related pathologies.
Ferroptosis is a non-apoptotic mode of regulated cell death that is iron and lipid peroxidation dependent. As new mechanistic insight into ferroptotic effectors and how they are regulated in different disease contexts is uncovered, our understanding of the physiological and pathological relevance of this mode of cell death continues to grow. Along these lines, a host of pharmacological modulators of this pathway have been identified, targeting proteins involved in iron homeostasis; the generation and reduction of lipid peroxides; or cystine import and glutathione metabolism. Also, of note, many components of the ferroptosis cascade are target genes of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), indicating its critical role in mediating the ferroptotic response. In this review, we discuss the in vitro, in vivo, and clinical evidence of ferroptosis in disease, including a brief discussion of targeting upstream mediators of this cascade, including NRF2, to treat ferroptosis-driven diseases. Key Mechanisms of the Ferroptotic CascadeAs more and more mechanistic insight into ferroptotic cell death comes to light, three key features continue to be the main Figure 1. NRF2 Regulates Genes Involved in Preventing FerroptosisUnder homeostatic conditions, NRF2 is ubiquitylated and targeted for proteasomal degradation by a KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex. Under conditions of oxidative/electrophilic stress, or as a result of mutations in KEAP1, CUL3, or NRF2 itself, NRF2 is no longer degraded, allowing for nuclear translocation and activation of antioxidant response element (ARE)-containing genes. NRF2 transcriptional targets are involved in mediating iron/metal metabolism, the catabolism/detoxification of reactive intermediates, and glutathione synthesis and metabolism, all of which play a key role in preventing initiation of ferroptosis.
Nuclear factor erythroid-2-related factor 1 (NRF1) and NRF2 are essential for maintaining redox homeostasis and coordinating cellular stress responses. They are highly homologous transcription factors that regulate the expression of genes bearing antioxidant-response elements (AREs). Genetic ablation of or results in vastly different phenotypic outcomes, implying that they play different roles and may be differentially regulated. Kelch-like ECH-associated protein 1 (KEAP1) is the main negative regulator of NRF2 and mediates ubiquitylation and degradation of NRF2 through its NRF2-ECH homology-like domain 2 (Neh2). Here, we report that KEAP1 binds to the Neh2-like (Neh2L) domain of NRF1 and stabilizes it. Consistently, NRF1 is more stable in than in isogenic cell lines, whereas NRF2 is dramatically stabilized in cells. Replacing NRF1's Neh2L domain with NRF2's Neh2 domain renders NRF1 sensitive to KEAP1-mediated degradation, indicating that the amino acids between the DLG and ETGE motifs, not just the motifs themselves, are essential for KEAP1-mediated degradation. Systematic site-directed mutagenesis identified the core amino acid residues required for KEAP1-mediated degradation and further indicated that the DLG and ETGE motifs with correct spacing are insufficient as a KEAP1 degron. Our results offer critical insights into our understanding of the differential regulation of NRF1 and NRF2 by KEAP1 and their different physiological roles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.